ترغب بنشر مسار تعليمي؟ اضغط هنا

INTEGRAL observations of SS433: systems parameters and nutation of supercritical accretion disk

340   0   0.0 ( 0 )
 نشر من قبل K. A. Postnov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on multiyear INTEGRAL observations of SS433 in 2003-2011, a composite IBIS/ISGRI 18-60 keV orbital light curve is constructed around zero precessional phases psi_{pr}= 0 at the maximim accretion disk opening angle. It shows a peculiar shape with significant excess near the orbital phase phi_orb= 0.25, which is not seen in the softer 2-10 keV energy band. The 40-60 keV orbital light curve demonstrates two almost equal humps at phases sim 0.25 and sim 0.75, most likely due to nutation effects of the accretion disk. The nutational variability of SS433 in 15-50 keV with a period of 6.290 days is independently found from timing analysis of Swift/BAT data. The change of the off-eclipse 18-60 keV X-ray flux with the precessional phase shows a double-wave form with strong primary maximum at psi_{pr}= 0 and weak but significant secondary maximum at psi_{pr}= 0.6. A weak variability of the 18-60 keV flux in the middle of the orbital eclipse correlated with the disk precessional phase is also observed. The joint analysis of the broadband 18-60 keV orbital and precessional light curves confirms the presence of a hot extended corona in the central parts of the supercritical accretion disk and constrains the binary mass ratio in SS433 in the range 0.5>q>0.3, suggesting the black hole nature of the compact object.



قيم البحث

اقرأ أيضاً

Results of simultaneous {it INTEGRAL} and optical observations of galactic microquasar SS433 in May 2003 are presented. The analysis of the X-ray and optical eclipse duration and hard X-ray spectra obtained by {it INTEGRAL} together with optical spec troscopy obtained on the 6-m telescope allows us to construct a model of SS433 as a massive X-ray binary. X-ray eclipse in hard X-rays has a depth of $sim 80%$ and extended wings. The optical spectroscopy allows us to identify the optical companion as a A5-A7 supergiant and to measure its radial velocity semi-amplitude $K_v=132$ km/s. A strong heating effect in the optical star atmosphere is discovered spectroscopically. The observed broadband X-ray spectrum 2-100 keV can be described by emission from optically thin thermal plasma with $kTsim 15-20 keV$
Results of simultaneous INTEGRAL and optical observations of galactic microquasar SS433 in May 2003 and INTEGRAL/RXTE observations in March 2004 are presented. Persistent precessional variability with a maximum to minimum uneclipsed hard X-ray flux r atio of sim 4 is discovered. The 18-60 keV X-ray eclipse is found to be in phase with optical and near infrared eclipses. The orbital eclipse observed by INTEGRAL in May 2003 is at least two times deeper and apparently wider than in soft X-ray band. The broadband X-ray spectrum 2-100 keV simultaneously detected by RXTE/INTEGRAL in March 2004 can be described by bremsstrahlung emission from optically thin thermal plasma with kTsim 30 keV. The optical spectroscopy with the 6-m SAO BTA telescope confirmed the optical companion to be an A5-A7 supergiant. For the first time, spectorscopic indications of a strong heating effect in the optical star atmosphere are found. The measurements of absorption lines which are presumably formed in the non-illuminated side of the supergiant yield its radial velocity semi-amplitude K_v=132pm 9 km/s. The analysis of the observed hard X-ray light curve and the eclipse duration, combined with spectroscopically found optical star radial velocity corrected for the strong heating effect, allows us to model SS433 as a massive X-ray binary. Assuming that the hard X-ray source in SS433 is eclipsed by the donor star that exactly fills its Roche lobe, the masses of the optical and compact components in SS433 are suggested to be M_vapprox 30 M_odot and M_xapprox 9M_odot, respectively. This provides further evidence that SS433 is a massive binary system with supercritical accretion onto a black hole.
54 - M.Revnivtsev 2005
We present broad band power spectra of variations of SS433 in radio, optical and X-ray spectral bands. We show that at frequencies lower than 1e-5 Hz the source demonstrates the same variability pattern in all these bands. The broad band power spectr um can be fitted by one power law down to frequencies ~1e-7 Hz with flattening afterwards. Such a flattening means that on time scales longer than ~1e7 sec the source variability becomes uncorrelated. This naturally leads to the appearance of quasi-poissonian flares in the source light curve, which have been regularly observed in radio and optical spectral bands. The radio flux power spectrum appears to have a second break at Fourier frequencies ~1e-5 Hz which can be caused by the smearing of the intrinsic radio variability on timescale of the light-crossing time of the radio emitting region. We find a correlation of the radio and optical fluxes of SS433 and the radio flux is delayed by about ~2 days with respect to the optical one. Power spectra of optical and X-ray variabilities continue with the same power law from 1e-7 Hz up to ~0.01-0.05 Hz. The broad band power spectrum of SS433 can be interpreted in terms of self-similar accretion rate modulations in the accretion disk proposed by Lyubarskii (1997) and elaborated by Churazov et al. (2001). We discuss a viscous time-scale in the accretion disk of SS433 in implication to the observed broad band power spectrum.
We estimate the relative contributions of the supermassive black hole (SMBH) accretion disk, corona, and obscuring torus to the bolometric luminosity of Seyfert galaxies, using Spizter mid-infrared (MIR) observations of a complete sample of 68 nearby active galactic nuclei from the INTEGRAL all-sky hard X-ray (HX) survey. This is the first HX-selected (above 15 keV) sample of AGNs with complementary high angular resolution, high signal to noise, MIR data. Correcting for the host galaxy contribution, we find a correlation between HX and MIR luminosities: L_MIR L_HX^(0.74+/-0.06). Assuming that the observed MIR emission is radiation from an accretion disk reprocessed in a surrounding dusty torus that subtends a solid angle decreasing with increasing luminosity (as inferred from the declining fraction of obscured AGNs), the intrinsic disk luminosity, L_D, is approximately proportional to the luminosity of the corona in the 2-300 keV energy band, L_C, with the L_D/L_C ratio varying by a factor of 2.1 around a mean value of 1.6. This ratio is a factor of ~2 smaller than for typical quasars producing the cosmic X-ray background (CXB). Therefore, over three orders of magnitude in luminosity, HX radiation carries a large, and roughly comparable, fraction of the bolometric output of AGNs. We estimate the cumulative bolometric luminosity density of local AGNs at ~(1-3)x10^40 erg/s/Mpc^3. Finally, the Compton temperature ranges between kT_c~2 and ~6 keV for nearby AGNs, compared to kT_c~2 keV for typical quasars, confirming that radiative heating of interstellar gas can play an important role in regulating SMBH growth.
92 - M. Revnivtsev 2004
We present results of first simultaneous optical and X-ray observations of peculiar binary system SS433. For the first time, chaotic variability of SS433 in the optical spectral band (R band) on time scales as small as tens of seconds was detected. W e find that the X-ray flux of SS433 is delayed with respect to the optical emission by approximately 80 sec. Such a delay can be interpreted as the travel time of mass accretion rate perturbations from the jet base to the observed X-ray emitting region. In this model, the length of the supercritical accretion disk funnel in SS433 is ~1e12 cm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا