ﻻ يوجد ملخص باللغة العربية
Using the Australia Telescope Compact Array we have detected CO(1-0) and CO(5-4) from TNJ0924-2201 at z=5.2, the most distant radio galaxy known to date. This is the second highest redshift detection of CO published so far. The CO(1-0) is 250-400 km/sec wide with a peak flux density of 520 +- 115 microJy/beam whilst the CO(5-4) line emission is 200-300 km/sec wide with a peak flux density of 7.8 +- 2.7 mJy/beam. Both transitions are spatially unresolved but there is marginal evidence for spatial offsets between the CO and the host galaxy; the CO(1-0) is located 28 +- 11 kpc (4.5 +- 1.7 arcsec) north of the radio galaxy whilst the CO(5-4) is located 18 +- 8 kpc (2.8 +- 1.2 arcsec) south of the radio galaxy. Higher spatial resolution observations are required to determine the reality of these offsets. Our result is the second detection of CO in a high redshift galaxy without pre-selection based on a massive dust content.
Context: The highest redshift quasars at z>~6 receive considerable attention since they provide strong constraints on the growth of the earliest supermassive black holes. They also probe the epoch of reionisation and serve as lighthouses to illuminat
We present a CO(1-0) survey for cold molecular gas in a representative sample of 13 high-z radio galaxies (HzRGs) at 1.4<z<2.8, using the Australia Telescope Compact Array. We detect CO(1-0) emission associated with five sources: MRC 0114-211, MRC 01
We report the detection of molecular CO(1-0) gas in the high-z radio galaxy MRC 0152-209 (z = 1.92) with the Australia Telescope Compact Array Broadband Backend (ATCA/CABB). This is the third known detection of CO(1-0) in a high-z radio galaxy to dat
We present the results of CO(1-0) emission mapping with the IRAM interferometer, at sim 1 arcsec, resolution, of the z=0.223 ultra-luminous starburst IRAS 11582+3020. This galaxy was selected from an IRAM-30m survey of 30 galaxies at moderate redshif
Context: There are about 60 quasars known at redshifts z>5.7 to date. Only three of them are detected in the radio above 1 mJy flux density at 1.4 GHz frequency. Among them, J1429+5447 (z=6.21) is the highest-redshift radio quasar known at present. T