ﻻ يوجد ملخص باللغة العربية
Context: There are about 60 quasars known at redshifts z>5.7 to date. Only three of them are detected in the radio above 1 mJy flux density at 1.4 GHz frequency. Among them, J1429+5447 (z=6.21) is the highest-redshift radio quasar known at present. These rare, distant, and powerful objects provide important insight into the activity of the supermassive black holes in the Universe at early cosmological epochs, and on the physical conditions in their environment. Aims: We studied the compact radio structure of J1429+5447 on the milli-arcsecond (mas) angular scale, in order to compare the structural and spectral properties with those of other two z~6 radio-loud quasars, J0836+0054 (z=5.77) and J1427+3312 (z=6.12). Methods: We performed Very Long Baseline Interferometry (VLBI) imaging observations of J1429+5447 with the European VLBI Network (EVN) at 1.6 GHz on 2010 June 8, and at 5 GHz on 2010 May 27. Results: Based on its observed radio properties, the compact but somewhat resolved structure on linear scales of <100 pc, and the steep spectrum, the quasar J1429+5447 is remarkably similar to J0836+0054 and J1427+3312. To answer the question whether the compact steep-spectrum radio emission is a universal feature of the most distant radio quasars, it is essential to study more, yet to be discovered radio-loud active galactic nuclei at z>6.
Context: The highest redshift quasars at z>~6 receive considerable attention since they provide strong constraints on the growth of the earliest supermassive black holes. They also probe the epoch of reionisation and serve as lighthouses to illuminat
Using the Australia Telescope Compact Array we have detected CO(1-0) and CO(5-4) from TNJ0924-2201 at z=5.2, the most distant radio galaxy known to date. This is the second highest redshift detection of CO published so far. The CO(1-0) is 250-400 km/
The highest-redshift quasars are still rare and valuable objects for observational astrophysics and cosmology. They provide important constraints on the growth of the earliest supermassive black holes in the Universe, and information on the physical
We report the 888 MHz radio detection in the Rapid ASKAP Continuum Survey (RACS) of VIK J2318$-$3113, a $z$=6.44 quasar. Its radio luminosity (1.2 $times 10^{26}$ W Hz$^{-1}$ at 5 GHz) compared to the optical luminosity (1.8 $times 10^{24}$ W Hz$^{-1
We present the discovery of a Type Ia supernova (SN) at redshift $z = 1.914$ from the CANDELS multi-cycle treasury program on the textit{Hubble Space Telescope (HST)}. This SN was discovered in the infrared using the Wide-Field Camera 3, and it is th