ترغب بنشر مسار تعليمي؟ اضغط هنا

The structure of the Galactic bar

80   0   0.0 ( 0 )
 نشر من قبل Carine Babusiaux
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a deep near-infrared wide-angle photometric analysis of the structure of the inner Galactic bar and central disk. The presence of a triaxial structure at the centre of the Galaxy is confirmed, consistent with a bar inclined at 22+/-5.5 deg from the Sun-Galactic centre line, extending to about 2.5 kpc from the Galactic centre and with a rather small axis ratio. A feature at l=-9.8 deg not aligned with this triaxiality suggests the existence of a second structure in the inner Galaxy, a double triaxiality or an inner ring. We argue that this is likely to be the signature of the end of the Galactic bar, at about 2.5-3 kpc, which is circumscribed by an inner pseudo-ring. No thick dust lane preceding the bar is detected, and a hole in the discs dust distribution inside the bar radius is inferred.

قيم البحث

اقرأ أيضاً

The Milky Ways bar dominates the orbits of stars and the flow of cold gas in the inner Galaxy, and is therefore of major importance for Milky Way dynamical studies in the Gaia era. Here we discuss the pronounced peanut shape of the Galactic bulge tha t has resulted from recent star count analysis, in particular from the VVV survey. We also discuss the question whether the Milky Way has an inner disky pseudo-bulge, and show preliminary evidence for a continuous transition in vertical scale-height from the peanut bulge-bar to the planar long bar.
We summarize recent work on the structure and dynamics of the Galactic bar and inner disk. Current work focusses on constructing a quantitative model which integrates NIR photometry, source count observations, gas kinematics, stellar dynamical observ ations, and microlensing. Some avenues for future research are discussed.
We study the structure of the inner Milky Way using the latest data release of the Vista Variables in Via Lactea (VVV) survey. The VVV is a deep near-infrared, multi-colour photometric survey with a coverage of 300 square degrees towards the Bulge/Ba r. We use Red Clump (RC) stars to produce a high-resolution dust map of the VVVs field of view. From de-reddened colour-magnitude diagrams we select Red Giant Branch stars to investigate their 3D density distribution within the central 4 kpc. We demonstrate that our best-fit parametric model of the Bulge density provides a good description of the VVV data, with a median percentage residual of 5$%$ over the fitted region. The strongest of the otherwise low-level residuals are overdensities associated with a low-latitude structure as well as the so-called X-shape previously identified using the split RC. These additional components contribute only $sim5%$ and $sim7%$ respectively to the Bulge mass budget. The best-fit Bulge is `boxy with an axis ratio of [1:0.44:0.31] and is rotated with respect to the Sun-Galactic Centre line by at least $20^{circ}$. We provide an estimate of the total, full sky, mass of the Bulge of $M_mathrm{Bulge}^{mathrm{Chabrier}} = 2.36 times 10^{10} M_{odot}$ for a Chabrier initial mass function. We show there exists a strong degeneracy between the viewing angle and the dispersion of the Red Clump absolute magnitude distribution. The value of the latter is strongly dependent on the assumptions made about the intrinsic luminosity function of the Bulge.
The algebraic expression $3 + 2 + 6$ can be evaluated to $11$, but it can also be partially evaluated to $5 + 6$. In categorical algebra, such partial evaluations can be defined in terms of the $1$-skeleton of the bar construction for algebras of a m onad. We show that this partial evaluation relation can be seen as the relation internal to the category of algebras generated by relating a formal expression to its total evaluation. The relation is transitive for many monads which describe commonly encountered algebraic structures, and more generally for BC monads on $mathsf{Set}$ (which are those monads for which the underlying functor and the multiplication are weakly cartesian). We find that this is not true for all monads: we describe a finitary monad on $mathsf{Set}$ for which the partial evaluation relation on the terminal algebra is not transitive. With the perspective of higher algebraic rewriting in mind, we then investigate the compositional structure of the bar construction in all dimensions. We show that for algebras of BC monads, the bar construction has fillers for all directed acyclic configurations in $Delta^n$, but generally not all inner horns.
We have used RR Lyrae and Blue HB stars as tracers of the old Galactic halo, in order to study the halo structure and the galactic rotation as a function of height above the plane. Our sample includes 40 RR Lyrae and 80 BHB stars that are about 2 to 15 kpc above the plane, in a roughly 250 sq. deg. area around the North Galactic Pole (NGP). We use proper motions (derived from the GSC-II database) and radial velocities to determine the rotation of the halo. From the whole sample the motion appears to be significantly more retrograde than the samples in the solar neighborhood, confirming Majewski (1992) results and our own preliminary results based on 1/3 the present sample (Kinman et al. 2003; Spagna et al. 2003). However, the better statistics has now revealed the likely existence of two components, whose characteristics need an accurate analysis of systematic errors on the proper motions in order to be assessed in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا