ترغب بنشر مسار تعليمي؟ اضغط هنا

First VLTI/MIDI observations of a Be star: Alpha Ara

58   0   0.0 ( 0 )
 نشر من قبل Olivier Chesneau
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Olivier Chesneau




اسأل ChatGPT حول البحث

We present the first VLTI/MIDI observations of the Be star Alpha Ara, showing a nearly unresolved circumstellar disk in the N band. The interferometric measurements made use of the UT1 and UT3 telescopes. The projected baselines were 102 and 74 meters with position angles of 7 degres and 55 degres, respectively. These measurements put an upper limit to the envelope size in the N band under the Uniform disk approximation of $phi_{rm max}= 4pm1.5$ mas, corresponding to 14 $R_{star}$, assuming $R_{star}$=4.8${rm R}_odot$ and the Hipparcos distance of 74pc. On the other hand the disk density must be large enough to produce the observed strong Balmer line emission. In order to estimate the possible circumstellar and stellar parameters we have used the SIMECA code developed by Stee (1995) and Stee & Bittar (2001). Optical spectra taken with the echelle instrument Heros and the ESO-50cm telescope, as well as infrared ones from the 1.6m Brazilian telescope have been used together with the MIDI spectra and visibilities. These observations put complementary constraints on the density and geometry of Alpha Ara circumstellar disk. We discuss on the potential truncation of the disk by a companion and we present spectroscopic indications of a periodic perturbation of some Balmer lines.

قيم البحث

اقرأ أيضاً

We study the circumstellar environment of the M-type AGB star RT Vir using mid-infrared high spatial resolution observations from the ESO-VLTI focal instrument MIDI. The aim of this study is to provide observational constraints on theoretical predict ion that the winds of M-type AGB objects can be driven by photon scattering on iron-free silicate grains located in the close environment (about 2 to 3 stellar radii) of the star. We interpreted spectro-interferometric data, first using wavelength-dependent geometric models. We then used a self-consistent dynamic model atmosphere containing a time-dependent description of grain growth for pure forsterite dust particles to reproduce the photometric, spectrometric, and interferometric measurements of RT Vir. Since the hydrodynamic computation needs stellar parameters as input, a considerable effort was first made to determine these parameters. MIDI differential phases reveal the presence of an asymmetry in the stellar vicinity. Results from the geometrical modeling give us clues to the presence of aluminum and silicate dust in the close circumstellar environment (< ~5 stellar radii). Comparison between spectro-interferometric data and a self-consistent dust-driven wind model reveals that silicate dust has to be present in the region between 2 to 3 stellar radii to reproduce the 59 and 63 m baseline visibility measurements around 9.8 micron. This gives additional observational evidence in favor of winds driven by photon scattering on iron-free silicate grains located in the close vicinity of an M-type star. However, other sources of opacity are clearly missing to reproduce the 10-13 micron visibility measurements for all baselines. This study is a first attempt to understand the wind mechanism of M-type AGB stars by comparing photometric, spectrometric, and interferometric measurements with state-of-the-art, self-consistent dust-driven wind models. The agreement of the dynamic model atmosphere with interferometric measurements in the 8-10 micron spectral region gives additional observational evidence that the winds of M-type stars can be driven by photon scattering on iron-free silicate grains. Finally, a larger statistical study and progress in advanced self-consistent 3D modeling are still required to solve the remaining problems.
In order to put MIDI/VLTI observations of AGNs on a significant statistical basis, the number of objects had to be increased dramatically from the few prominent bright cases to over 20. For this, correlated fluxes as faint as ~ 150 mJy need to be obs erved, calibrated and their errors be estimated reliably. We have developed new data reduction methods for the coherent estimation of correlated fluxes with the Expert Work Station (EWS). They increase the signal/noise of the reduced correlated fluxes by decreasing the jitter in the group delay estimation. While correlation losses cannot be fully avoided for the weakest objects even with the improved routines, we have developed a method to simulate observations of weak targets and can now detect --- and correct for --- such losses. We have analyzed all sources of error that are relevant for the observations of weak targets. Apart from the photon-noise error, that is usually quoted, there is an additional error from the uncertainty in the calibration (i.e. the conversion factor). With the improved data reduction, calibration and error estimation, we can consistently and reproducibly observe fluxes as weak as ~ 150 mJy with an uncertainty of ~ 15 % under average conditions.
AMBER is the first near infrared focal instrument of the VLTI. It combines three telescopes and produces spectrally resolved interferometric measures. This paper discusses some preliminary results of the first scientific observations of AMBER with th ree Unit Telescopes at medium (1500) and high (12000) spectral resolution. We derive a first set of constraints on the structure of the circumstellar material around the Wolf Rayet Gamma2 Velorum and the LBV Eta Carinae.
VLT-Interferometry will allow imaging of the Galactic Center (GC) and the nuclei of extragalactic sources at an angular resolution of a few milliarcseconds. VLTI will be a prime instrument to study the immediate environment of the massive black hole at the center of the Milky Way. With the MID infrared Interferometric instrument (MIDI) for example the enigmatic compact dust embedded MIR-excess sources within the central parsec should be resolvable. Further the observations of external galactic nuclei will allow unprecedented measurements of physical parameters (i.e. structure and luminosity) in these systems. With the exception of a few self-referencing sources these faint-target observations will benefit from the available off-axis wavefront-correction system. To fully exploit the use of VLTI within this context, the following questions have to be addressed among others: How feasible is blind-pointing on (faint) science targets? Are VLTI observations still efficiently feasible if these faint science targets exceed the usual angular distance (<=1arcmin) to a GuideStar [...]? How is the fringe-tracking procedure affected in densely populated regions such as the GC? What preparatory steps have to be performed to successfully observe these non-standard targets with the VLTI? In this contribution, we present aspects for the preparation of VLTI observations, which will be conducted in the near future. Considering these example observations of the GC region, several details of observing modes are discussed, which are necessary to observe such science targets. The final goal is the definition of observational strategies [...] touching the limits of VLTI observability.
58 - Pierre Kervella 2008
Context: As is the case of several other Be stars, Achernar is surrounded by an envelope, recently detected by near-IR interferometry. Aims: We search for the signature of circumstellar emission at distances of a few stellar radii from Achernar, in the thermal IR domain. Methods: We obtained interferometric observations on three VLTI baselines in the N band (8-13 mic), using the MIDI instrument. Results: From the measured visibilities, we derive the angular extension and flux contribution of the N band circumstellar emission in the polar direction of Achernar. The interferometrically resolved polar envelope contributes 13.4 +/- 2.5 % of the photospheric flux in the N band, with a full width at half maximum of 9.9 +/- 2.3 mas (~ 6 Rstar). This flux contribution is in good agreement with the photometric IR excess of 10-20% measured by fitting the spectral energy distribution. Due to our limited azimuth coverage, we can only establish an upper limit of 5-10% for the equatorial envelope. We compare the observed properties of the envelope with an existing model of this star computed with the SIMECA code. Conclusions: The observed extended emission in the thermal IR along the polar direction of Achernar is well reproduced by the existing SIMECA model. Already detected at 2.2mic, this polar envelope is most probably an observational signature of the fast wind ejected by the hot polar caps of the star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا