ﻻ يوجد ملخص باللغة العربية
In order to put MIDI/VLTI observations of AGNs on a significant statistical basis, the number of objects had to be increased dramatically from the few prominent bright cases to over 20. For this, correlated fluxes as faint as ~ 150 mJy need to be observed, calibrated and their errors be estimated reliably. We have developed new data reduction methods for the coherent estimation of correlated fluxes with the Expert Work Station (EWS). They increase the signal/noise of the reduced correlated fluxes by decreasing the jitter in the group delay estimation. While correlation losses cannot be fully avoided for the weakest objects even with the improved routines, we have developed a method to simulate observations of weak targets and can now detect --- and correct for --- such losses. We have analyzed all sources of error that are relevant for the observations of weak targets. Apart from the photon-noise error, that is usually quoted, there is an additional error from the uncertainty in the calibration (i.e. the conversion factor). With the improved data reduction, calibration and error estimation, we can consistently and reproducibly observe fluxes as weak as ~ 150 mJy with an uncertainty of ~ 15 % under average conditions.
To understand the relation between the small obscuring torus and dusty structures at larger scales (5-10 pc) in NGC 1068, we use ESOs Mid-Infrared Interferometer (MIDI) with the 1.8 m Auxiliary Telescopes to achieve the necessary spatial resolution (
Context: A turbulent atmosphere causes atmospheric piston variations leading to rapid changes in the optical path difference of an interferometer, which causes correlated flux losses. This leads to decreased sensitivity and accuracy in the correlated
The AGN-heated dust distribution (the torus) is increasingly recognized not only as the absorber required in unifying models, but as a tracer for the reservoir that feeds the nuclear Super-Massive Black Hole. Yet, even its most basic structural prope
In principle, the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Array (VLTI) should always measure the same calibrated total flux spectrum for a specific source, independent of the instrument settings and the baseline geo
We study the circumstellar environment of the M-type AGB star RT Vir using mid-infrared high spatial resolution observations from the ESO-VLTI focal instrument MIDI. The aim of this study is to provide observational constraints on theoretical predict