ترغب بنشر مسار تعليمي؟ اضغط هنا

TeV Neutrinos from Successful and Choked Gamma-Ray Bursts

401   0   0.0 ( 0 )
 نشر من قبل Peter Meszaros
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Meszaros




اسأل ChatGPT حول البحث

Core collapse of massive stars resulting in a relativistic fireball jet which breaks through the stellar envelope is a widely discussed scenario for gamma-ray burst production. For very extended or slow rotating stars, the fireball may be unable to break through the envelope. Both penetrating and choked jets will produce, by photo-meson interactions of accelerated protons, a burst of neutrinos with energies in excess of 5 TeV while propagating in the envelope. The predicted flux, from both penetrating and chocked fireballs, should be easily detectable by planned cubic kilometer neutrino telescopes.

قيم البحث

اقرأ أيضاً

Both long-duration gamma-ray bursts (LGRBs) from core collapse of massive stars and short-duration GRBs (SGRBs) from mergers of binary neutron star (BNS) or neutron star--black hole (NSBH) are expected to occur in the accretion disk of active galacti c nuclei (AGNs). We show that GRB jets embedded in the migration traps of AGN disks are promised to be choked by the dense disk material. Efficient shock acceleration of cosmic rays at the reverse shock is expected, and high-energy neutrinos would be produced. We find that these sources can effectively produce detectable TeV--PeV neutrinos through $pgamma$ interactions. From a choked LGRB jet with isotropic equivalent energy of $10^{53},{rm erg}$ at $100,{rm Mpc}$, one expects $sim2,(7)$ neutrino events detectable by IceCube (IceCube-Gen2). The contribution from choked LGRBs to the observed diffuse neutrino background depends on the unknown local event rate density of these GRBs in AGN disks. For example, if the local event rate density of choked LGRBs in AGN disk is $sim5%$ that of low-luminosity GRBs $(sim10,{rm Gpc}^{-3},{rm yr}^{-1})$, the neutrinos from these events would contribute to $sim10%$ of the observed diffuse neutrino background. Choked SGRBs in AGN disks are potential sources for future joint electromagnetic, neutrino, and gravitational wave multi-messenger observations.
The origin of the IceCube neutrinos is still an open question. Upper limits from diffuse gamma-ray observations suggest that the neutrino sources are either distant or hidden from gamma-ray observations. It is possible that the neutrinos are produced in jets that are formed in the core-collapsing massive stars and fail to break out, the so-called choked jets. We study neutrinos from the jets choked in the hydrogen envelopes of red supergiant stars. Fast photo-meson cooling softens the neutrino spectrum, making it difficult to explain the PeV neutrinos observed by IceCube in a one-component scenario, but a two-component model can explain the spectrum. Furthermore, we predict that a newly born jet-driven type-II supernova may be observed to be associated with a neutrino burst detected by IceCube.
217 - P. C. Fragile 2002
We explore several models which might be proposed to explain recent possible detections of high-energy (TeV) gamma rays in association with low-energy gamma-ray bursts (GRBs). Likely values (and/or upper limits) for the source energies in low- and hi gh-energy gamma rays and hadrons are deduced for the burst sources associated with possible TeV gamma-ray detections by the Project GRAND array. Possible spectra for energetic gammas are deduced for three models: 1) inverse-Compton scattering of ambient photons from relativistic electrons; 2) proton-synchrotron emission; and 3) inelastic scattering of relativistic protons from ambient photons creating high-energy neutral pions, which decay into high-energy photons. These models rely on some basic assumptions about the GRB properties, e.g. that: the low- and high-energy gamma rays are produced at the same location; the time variability of the high-energy component can be estimated from the FWHM of the highest peak in the low-energy gamma ray light curve; and the variability-luminosity relation of Fenimore & Ramirez-Ruiz (2000) gives a reliable estimate of the redshifts of these bursts. We also explore the impact of each of these assumptions upon our models. We conclude that the energetic requirements are difficult to satisfy for any of these models unless, perhaps, either the photon beaming angle is much narrower for the high-energy component than for the low-energy GRB or the bursts occur at very low redshifts (z<0.01). Nevertheless, we find that the energetic requirements are most easily satisfied if TeV gamma rays are produced predominantly by inverse-Compton scattering with a magnetic field strength well below equipartition or by proton-synchrotron emission with a magnetic field strength near equipartition.
189 - A. Bhadra , R. K. Dey 2008
Recent studies suggest that pulsars could be strong sources of TeV muon neutrinos provided positive ions are accelerated by pulsar polar caps to PeV energies. In such a situation muon neutrinos are produced through the delta resonance in interactions of pulsar accelerated ions with its thermal radiation field. High energy gamma rays also should be produced simultaneously in pulsar environment as both charged and neutral pions are generated in the interactions of energetic hadrons with the ambient photon fields. Here we estimate TeV gamma ray flux at Earth from few nearby young pulsars. When compared with the observations we find that proper consideration of the effect of polar cap geometry in flux calculation is important. Incorporating such an effect we obtain the (revised) event rates at Earth due to few potential nearby pulsars. The results suggest that pulsars are unlikely to be detected by the upcoming neutrino telescopes. We also estimate TeV gamma ray and neutrino fluxes from pulsar nebulae for the adopted model of particle acceleration.
We calculate the high energy neutrino spectrum from gamma-ray bursts where the emission arises in a dissipative jet photosphere determined by either baryonically or magnetically dominated dynamics, and compare these neutrino spectra to those obtained in conventional internal shock models. We also calculate the diffuse neutrino spectra based on these models, which appear compatible with the current IceCube 40+59 constraints. While a re-analysis based on the models discussed here and the data from the full array would be needed, it appears that only those models with the most extreme parameters are close to being constrained at present. A multi-year operation of the full IceCube and perhaps a next generation of large volume neutrino detectors may be required in order to distinguish between the various models discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا