ﻻ يوجد ملخص باللغة العربية
We present a study to determine how star formation contributes to galaxy growth since z=1.5 over five decades in galaxy stellar mass. We investigate the specific star formation rate (SSFR; star formation rate [SFR] per unit galaxy stellar mass) as a function of galaxy stellar mass and redshift. A sample of 175 K-band selected galaxies from the MUnich Near-Infrared Cluster Survey spectroscopic dataset provide intermediate to high mass galaxies (mostly M* > 10^10 Msun) to z=1. The FORS Deep Field provides 168 low mass galaxies (mostly M* < 10^10 Msun) to z=1.5. We use a Sloan Digital Sky Survey galaxy sample to test the compatibility of our results with data drawn from a larger volume. We find that at all redshifts, the SSFR decreases with increasing galaxy stellar mass suggesting that star formation contributes more to the growth of low mass galaxies than to the growth of high mass galaxies, and that high mass galaxies formed the bulk of their stellar content before z=1. At each epoch we find a ridge in SSFR versus stellar mass that is parallel to lines of constant SFR and evolves independently of galaxy stellar mass to a particular turnover mass. Galaxies above this turnover mass show a sharp decrease in the SFR compared to the average at each epoch and the turnover mass increases with redshift. The SFR along the SSFR ridge decreases by roughly a factor of 10, from 10 Msun/yr at z=1.5 to 1 Msun/yr at z=0. High mass galaxies could sustain the observed rates of star formation over the 10 Gyr observed, but low mass galaxies likely undergo episodic starbursts.
We explore the build-up of stellar mass in galaxies over a wide redshift range 0.4 < z < 5.0 by studying the evolution of the specific star formation rate (SSFR), defined as the star formation rate per unit stellar mass, as a function of stellar mass
We investigate the location of an ultra-hard X-ray selected sample of AGN from the Swift Burst Alert Telescope (BAT) catalog with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate
The star formation rate (SFR) is a key parameter in the study of galaxy evolution. The accuracy of SFR measurements at z~2 has been questioned following a disagreement between observations and theoretical models. The latter predict SFRs at this redsh
The slope of the star formation rate/stellar mass relation (the SFR Main Sequence; ${rm SFR}-M_*$) is not quite unity: specific star formation rates $({rm SFR}/M_*)$ are weakly-but-significantly anti-correlated with $M_*$. Here we demonstrate that th
Establishing the stellar masses (M*), and hence specific star-formation rates (sSFRs) of submillimetre galaxies (SMGs) is crucial for determining their role in the cosmic galaxy/star formation. However, there is as yet no consensus over the typical M