ترغب بنشر مسار تعليمي؟ اضغط هنا

The Galaxy Luminosity Function from M_R = -25 to M_R = -9

189   0   0.0 ( 0 )
 نشر من قبل Neil Trentham
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Redshift surveys like the Sloan Digital Sky Survey (SDSS) have given a very precise measurement of the galaxy luminosity function down to about M_R = -17 (~ M_B = -16). Fainter absolute magnitudes cannot be probed because of the flux limit required for spectroscopy. Wide-field surveys of nearby groups using mosaic CCDs on large telescopes are able to reach much fainter absolute magnitudes, about M_R = -10. These diffuse, spiral-rich groups are thought to be typical environments for galaxies so their luminosity functions should be the same as the field luminosity function. The luminosity function of the groups at the bright end (M_R < -17) is limited by Poisson statistics and is far less precise than that derived from redshift surveys. Here we combine the results of the SDSS and the surveys of nearby groups and supplement the results with studies of Local Group galaxies in order to determine the galaxy luminosity function over the entire range -25 <M_R < -9. The average logarithmic slope of the field luminosity function between M_R = -19 and M_R = -9 is alpha = -1.26, although a single power law is a poor fit to the data over the entire magnitude range. We also determine the luminosity function of galaxy clusters and demonstrate that it is different from the field luminosity function at a high level of significance: there are many more dwarf galaxies in clusters than in the field, due to a rise in the cluster luminosity function of alpha ~ -1.6 between M_R = -17 and M_R = -14.



قيم البحث

اقرأ أيضاً

151 - C. Adami , J. P. Picat , F. Durret 2007
This study follows a recent analysis of the galaxy luminosity functions and colour-magnitude red sequences in the Coma cluster (Adami et al. 2007). We analyze here the distribution of very faint galaxies and globular clusters in an east-west strip of $sim 42 times 7$ arcmin$^2$ crossing the Coma cluster center (hereafter the CS strip) down to the unprecedented faint absolute magnitude of M$_R sim -9.5$. This work is based on deep images obtained at the CFHT with the CFH12K camera in the B, R, and I bands. The analysis shows that the observed properties strongly depend on the environment, and thus on the cluster history. When the CS is divided into four regions, the westernmost region appears poorly populated, while the regions around the brightest galaxies NGC 4874 and NGC 4889 (NGC 4874 and NGC 4889 being masked) are dominated by faint blue galaxies. They show a faint luminosity function slope of -2, very significantly different from the field estimates. Results are discussed in the framework of galaxy destruction (which can explain part of the very faint galaxy population) and of structures infalling on to Coma.
Results are presented of a deep optical survey of the Ursa Major Cluster, a spiral-rich cluster of galaxies at a distance of 18.6 Mpc which contains about 30% of the light but only 5% of the mass of the nearby Virgo Cluster. Fields around known clust er members and a pattern of blind fields along the major and minor axes of the cluster were studied with mosaic CCD cameras on the Canada-France-Hawaii Telescope. The dynamical crossing time for the Ursa Major Cluster is only slightly less than a Hubble time. Most galaxies in the local Universe exist in similar moderate density environments. The Ursa Major Cluster is therefore a good place to study the statistical properties of dwarf galaxies since this structure is at an evolutionary stage representative of typical environments yet has enough galaxies that reasonable counting statistics can be accumulated. The main observational results of our survey are: (i) The galaxy luminosity function is flat, with a logarithmic slope alpha = -1.1 for -17 < M_R < -11, from a power-law fit. The error in alpha is likely to be less than 0.2 and is dominated by systematic errors, primarily associatedd with uncertainties in assigning membership to specific galaxies. This faint end slope is quite different to what was seen in the Virgo Cluster where alpha=-2.26. (ii) Dwarf galaxies are as frequently found to be blue dwarf irregulars as red dwarf spheroidals in the blind cluster fields. The density of red dwarfs is significantly higher in the fields around luminous members than in the blind fields. The most important result is the failure to detect many dwarfs. If the steep luminosity function claimed for the Virgo Cluster were valid for Ursa Major then in our blind fields we should have found about 1000 galaxies with -17 < M_R <-11 where we have found two dozen.
The evolution of the B-band galaxy luminosity function is measured using a sample of more than 11,000 galaxies with spectroscopic redshifts from the DEEP2 Redshift Survey. The rest-frame M_B versus U-B color-magnitude diagram of DEEP2 galaxies shows that the color-magnitude bi-modality seen in galaxies locally is still present at redshifts z > 1. Dividing the sample at the trough of this color bimodality into predominantly red and blue galaxies, we find that the luminosity function of each galaxy color type evolves differently. Blue counts tend to shift to brighter magnitudes at constant number density, while the red counts remain largely constant at a fixed absolute magnitude. Using Schechter functions with fixed faint-end slopes we find that M*_B for blue galaxies brightens by ~ 1.3 magnitudes per unit redshift, with no significant evolution in number density. For red galaxies M*_B brightens somewhat less with redshift, while the formal value of phi* declines. When the population of blue galaxies is subdivided into two halves using the rest-frame color as the criterion, the measured evolution of both blue subpopulations is very similar.
71 - H.-W. Chen 2001
We present results from the Las Campanas Infrared Survey, designed to identify a statistically significant sample of z>=1 galaxies using photometric redshift techniques. Here we summarize the design and strategies of the survey and present the first estimate of the galaxy luminosity function at z>=1 based on H-band selected galaxies identified in our survey. Results of number count studies and luminosity function measurements indicate that most early-type galaxies were already in place by z~1.2 with a modest space density evolution and a mild luminosity evolution over that expected from passive evolution.
182 - D. Sobral 2009
New results are presented, as part of the Hi-z Emission Line Survey (HiZELS), from the largest area survey to date (1.4 sq.deg) for Lyman-alpha emitters (LAEs) at z~9. The survey, which is primarily targeting H-alpha emitters at z<3, uses the Wide Fi eld CAMera on the United Kingdom Infrared Telescope and a custom narrow-band filter in the J band and reaches a Lyman-alpha luminosity limit of ~10^43.8 erg/s over a co-moving volume of 1.12x10^6 Mpc^3 at z=8.96+-0.06. Only 2 candidates were found out of 1517 line emitters and those were rejected as LAEs after follow-up observations. The limit on the space density of bright LAEs is improved by 3 orders of magnitude, consistent with suppression of the bright end of the Lyman-alpha luminosity function beyond z~6. Combined with upper limits from smaller but deeper surveys, this rules out some of the most extreme models for high-redshift LAEs. The potential contamination of future narrow-band Lyman-alpha surveys at z>7 by Galactic brown dwarf stars is also examined, leading to the conclusion that such contamination may well be significant for searches at 7.7<z<8.0, 9.1<z<9.5 and 11.7 < z < 12.2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا