ترغب بنشر مسار تعليمي؟ اضغط هنا

The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1

116   0   0.0 ( 0 )
 نشر من قبل Christopher N. A. Willmer
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of the B-band galaxy luminosity function is measured using a sample of more than 11,000 galaxies with spectroscopic redshifts from the DEEP2 Redshift Survey. The rest-frame M_B versus U-B color-magnitude diagram of DEEP2 galaxies shows that the color-magnitude bi-modality seen in galaxies locally is still present at redshifts z > 1. Dividing the sample at the trough of this color bimodality into predominantly red and blue galaxies, we find that the luminosity function of each galaxy color type evolves differently. Blue counts tend to shift to brighter magnitudes at constant number density, while the red counts remain largely constant at a fixed absolute magnitude. Using Schechter functions with fixed faint-end slopes we find that M*_B for blue galaxies brightens by ~ 1.3 magnitudes per unit redshift, with no significant evolution in number density. For red galaxies M*_B brightens somewhat less with redshift, while the formal value of phi* declines. When the population of blue galaxies is subdivided into two halves using the rest-frame color as the criterion, the measured evolution of both blue subpopulations is very similar.



قيم البحث

اقرأ أيضاً

407 - P. Norberg , S. Cole , C. Baugh 2001
We use more than 110500 galaxies from the 2dF galaxy redshift survey (2dFGRS) to estimate the b_J-band galaxy luminosity function at redshift z=0, taking account of evolution, the distribution of magnitude measurement errors and small corrections for incompletenessin the galaxy catalogue. Throughout the interval -16.5>M- 5log h>-22, the luminosity function is accurately described by a Schechter function with M* -5log h =-19.66+/-0.07, alpha=-1.21+/-0.03 and phistar=(1.61+/-0.08) 10^{-2} h^3/Mpc^3, giving an integrated luminosity density of rho_L=(1.82+/-0.17) 10^8 h L_sol/Mpc^3 (assuming an Omega_0=0.3, Lambda_0=0.7 cosmology). The quoted errors have contributions from the accuracy of the photometric zeropoint, large scale structure in the galaxy distribution and, importantly, from the uncertainty in the appropriate evolutionary corrections. Our luminosity function is in excellent agreement with, but has much smaller statistical errors than an estimate from the Sloan Digital Sky Survey (SDSS) data when the SDSS data are accurately translated to the b_J-band and the luminosity functions are normalized in the same way. We use the luminosity function, along with maps describing the redshift completeness of the current 2dFGRS catalogue, and its weak dependence on apparent magnitude, to define a complete description of the 2dFGRS selection function. Details and tests of the calibration of the 2dFGRS photometric parent catalogue are also presented.
371 - R. De Propris 1999
We present $K$-band luminosity functions for galaxies in a heterogeneous sample of 38 clusters at $0.1 < z < 1$. Using infrared-selected galaxy samples which generally reach 2 magnitudes fainter than the characteristic galaxy luminosity $L^*$, we fit Schechter functions to background-corrected cluster galaxy counts to determine $K^*$ as a function of redshift. Because of the magnitude limit of our data, the faint-end slope $alpha$ is fixed at -0.9 in the fitting process. We find that $K^*(z)$ departs from no-evolution predictions at $z > 0.4$, and is consistent with the behavior of a simple, passive luminosity evolution model in which galaxies form all their stars in a single burst at $z_f = 2 (3)$ in an $H_0 = 65 km/s Mpc^{-1}, Omega_M = 0.3, Omega_{Lambda}=0.7 (0)$ universe. This differs from the flat or negative infrared luminosity evolution which has been reported for high redshift field galaxy samples. We find that the observed evolution appears to be insensitive to cluster X-ray luminosity or optical richness, implying little variation in the evolutionary history of galaxies over the range of environmental densities spanned by our cluster sample. These results support and extend previous analyses based on the color evolution of high redshift cluster E/S0 galaxies, indicating not only that their stellar populations formed at high redshift, but that the assembly of the galaxies themselves was largely complete by $z approx 1$, and that subsequent evolution down to the present epoch was primarily passive.
58 - Lihwai Lin 2004
We derive the close, kinematic pair fraction and merger rate up to z ~ 1.2 from the initial data of the DEEP2 Redshift Survey. Assuming a mild luminosity evolution, the number of companions per luminous galaxy is found to evolve as (1+z)^{m}, with m = 0.51+-0.28; assuming no evolution, m = 1.60+-0.29. Our results imply that only 9% of present-day $L^{*}$ galaxies have undergone major mergers since z ~ 1.2 and that the average major merger rate is about 4* 10^{-4} h^{3} Mpc^{-3} Gyr^{-1} for z ~ 0.5 - 1.2. Most previous studies have yielded higher values.
71 - H.-W. Chen 2001
We present results from the Las Campanas Infrared Survey, designed to identify a statistically significant sample of z>=1 galaxies using photometric redshift techniques. Here we summarize the design and strategies of the survey and present the first estimate of the galaxy luminosity function at z>=1 based on H-band selected galaxies identified in our survey. Results of number count studies and luminosity function measurements indicate that most early-type galaxies were already in place by z~1.2 with a modest space density evolution and a mild luminosity evolution over that expected from passive evolution.
Postststarburst (K+A) galaxies are candidates for galaxies in transition from a star-forming phase to a passively-evolving phase. We have spectroscopically identified large samples of K+A galaxies both in the SDSS at z~0.1 and in the DEEP2 survey at z~0.8, using a robust selection method based on a cut in Hbeta emission rather than the more problematic [OII] 3727. Based on measurements of the overdensity of galaxies around each object, we find that K+A galaxies brighter than 0.4L*_B at low-z have a similar, statistically indistinguishable environment distribution as blue galaxies, preferring underdense environments, but dramatically different from that of red galaxies. However, at higher-z, the environment distribution of K+A galaxies is more similar to red galaxies than to blue galaxies. We conclude that the quenching of star formation and the build-up of the red sequence through the K+A phase is happening in relatively overdense environments at z~1 but in relatively underdense environments at z~0. Although the relative environments where quenching occurs are decreasing with time, the corresponding absolute environment may have stayed the same along with the quenching mechanisms, because the mean absolute environments of all galaxies has to grow with time. In addition, we do not find any significant dependence on luminosity in the environment distribution of K+As. The existence of a large K+A population in the field at both redshifts indicates that cluster-specific mechanisms cannot be the dominant route by which these galaxies are formed. We also demonstrates that studying K+A-environment relations by measuring the K+A fraction in different environments is highly non-robust. Statistical comparisons of the overall environment distributions of different populations are much better behaved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا