ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Mass Companions to Solar-Type Stars

89   0   0.0 ( 0 )
 نشر من قبل Stanimir A. Metchev
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present preliminary results from a coronagraphic survey of young nearby Sun-like stars using the Palomar and Keck adaptive optics systems. We have targeted 251 solar analogs (F5-K5) at 20-160 pc from the Sun, spanning the 3-3000 Myr age range. The youngest (<500 Myr) 100 of these have been imaged with deeper exposures to search for sub-stellar companions. The deep survey is sensitive to brown-dwarf companions at separations >0.5 from their host stars, with sensitivity extending to planetary-mass (5-15 Mjup) objects at wider (>3) separations. Based on the discovery of a number of new low-mass (<0.2 Msun) stellar companions, we infer that their frequency at >20 AU separations (probed via direct imaging) may be greater (12%) than that found from radial velocity surveys probing <4 AU separations (6%; Mazeh et al. 2003). We also report the astrometric confirmation of the first sub-stellar companion from the survey - an L4 brown dwarf at a projected distance of 44 AU from the 500 Myr-old star HD 49197. Based on this detection, we estimate that the frequency of sub-stellar companions to solar-type stars is at least 1%, and possibly of order a few per cent.



قيم البحث

اقرأ أيضاً

We report low mass companions orbiting five Solar-type stars that have emerged from the Magellan precision Doppler velocity survey, with minimum (Msini) masses ranging from 1.2 to 25 Mjup. These nearby target stars range from mildly metal-poor to met al-rich, and appear to have low chromospheric activity. The companions to the brightest two of these stars have previously been reported from the CORALIE survey. Four of these companions (HD 48265-b, HD 143361-b, HD 28185-b, HD 111232-b) are low-mass Jupiter-like planets in eccentric intermediate and long-period orbits. On the other hand, the companion to HD 43848 appears to be a long period brown dwarf in a very eccentric orbit.
It has been suggested that besides stellar companions, substellar objects in close orbits may be able to trigger mass loss in a common envelope phase and form hot subdwarfs. In an ongoing project we search for close substellar companions combining ti me resolved high resolution spectroscopy with photometry. We determine the fraction of as yet undetected radial velocity variable systems from a sample of 27 apparently single sdB stars to be 16%. We discovered low-mass stellar companions to the He-sdB CPD-20 1123 and the pulsator KPD 0629-0016. The brown dwarf reported to orbit the eclipsing binary SDSS J0820+0008 could be confirmed by an analysis of high resolution spectra taken with UVES. Reflection effects have been detected in the light curves of the known sdB binaries CPD-64 481 and BPS CS 22169-0001. The inclinations of these systems must be much higher than expected and the most likely companion masses are in the substellar regime. Finally, we determined the orbit of the sdB binary PHL 457, which has a very small radial velocity amplitude and may host the lowest mass substellar companion known. The implications of these new results for the open question of sdB formation are discussed.
We report the discovery of a candidate brown dwarf or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object cont ains 31 epochs spread over 2.5 years. Our Keplerian fit using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of $90.2695^{+0.0188}_{-0.0187}$ days, an eccentricity of $0.4375 pm 0.0040$ and a semi-amplitude of $2948.14^{+16.65}_{-16.55}$ m s$^{-1}$. Using additional high-resolution spectroscopy, we find the host star has an effective temperature $T_{rm{eff}}=6004 pm 34$ K, a surface gravity $log g$ [cgs] $=4.55 pm 0.17$ and a metallicity [Fe/H] $=+0.04 pm 0.06$. The stellar mass and radius determined through the empirical relationship of Torres et al. (2010), yields 1.10$pm$0.09 $M_{sun}$ and 0.92$pm$0.19 $R_{sun}$. The minimum mass of MARVELS-5b is $65.0 pm 2.9 M_{Jup}$, indicating that it is likely to be either a brown dwarf or a very low mass star, thus occupying a relatively sparsely-populated region of the mass function of companions to solar-type stars. The distance to this system is 101$pm$10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2$M_{sun}$ at a separation larger than 40 AU.
This paper reports a blind search for magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, str onger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (<~ 30 pc) with relatively young age estimates (< 3 Gyr). We constructed different samples from the stellar catalogs, finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey (VLSS), obtaining 3sigma limits on planetary emission in the stacked images of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 10^{23} erg/s. Using recent models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic energy carried by the stellar winds in our samples is 15--50 times larger than that of the Sun, and the typical magnetic energy is 5--10 times larger. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 10--100 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100.
We report the detections of substellar companions orbiting around seven evolved intermediate-mass stars from precise Doppler measurements at Okayama Astrophysical Observatory. o UMa (G4 II-III) is a giant with a mass of 3.1 M_sun and hosts a planet w ith minimum mass of m_2sini=4.1 M_J in an orbit with a period P=1630 d and an eccentricity e=0.13. This is the first planet candidate (< 13 M_J) ever discovered around stars more massive than 3 M_sun. o CrB (K0 III) is a 2.1 M_sun giant and has a planet of m_2sini=1.5 M_J in a 187.8 d orbit with e=0.19. This is one of the least massive planets ever discovered around ~2 M_sun stars. HD 5608 (K0 IV) is an 1.6 M_sun subgiant hosting a planet of m_2sini=1.4 M_J in a 793 d orbit with e=0.19. The star also exhibits a linear velocity trend suggesting the existence of an outer, more massive companion. 75 Cet (G3 III:) is a 2.5 M_sun giant hosting a planet of m_2sini=3.0 M_J in a 692 d orbit with e=0.12. The star also shows possible additional periodicity of about 200 d and 1880 d with velocity amplitude of ~7--10 m/s, although these are not significant at this stage. nu Oph (K0 III) is a 3.0 M_sun giant and has two brown-dwarf companions of m_2sini= 24 M_J and 27 M_J, in orbits with P=530.3 d and 3190 d, and e=0.126 and 0.17, respectively, which were independently announced by Quirrenbach et al. (2011). The ratio of the periods is close to 1:6, suggesting that the companions are in mean motion resonance. We also independently confirmed planets around k CrB (K0 III-IV) and HD 210702 (K1 IV), which had been announced by Johnson et al. (2008) and Johnson et al. (2007a), respectively. All of the orbital parameters we obtained are consistent with the previous results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا