ترغب بنشر مسار تعليمي؟ اضغط هنا

Substellar Companions to Seven Evolved Intermediate-Mass Stars

91   0   0.0 ( 0 )
 نشر من قبل Bunei Sato
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detections of substellar companions orbiting around seven evolved intermediate-mass stars from precise Doppler measurements at Okayama Astrophysical Observatory. o UMa (G4 II-III) is a giant with a mass of 3.1 M_sun and hosts a planet with minimum mass of m_2sini=4.1 M_J in an orbit with a period P=1630 d and an eccentricity e=0.13. This is the first planet candidate (< 13 M_J) ever discovered around stars more massive than 3 M_sun. o CrB (K0 III) is a 2.1 M_sun giant and has a planet of m_2sini=1.5 M_J in a 187.8 d orbit with e=0.19. This is one of the least massive planets ever discovered around ~2 M_sun stars. HD 5608 (K0 IV) is an 1.6 M_sun subgiant hosting a planet of m_2sini=1.4 M_J in a 793 d orbit with e=0.19. The star also exhibits a linear velocity trend suggesting the existence of an outer, more massive companion. 75 Cet (G3 III:) is a 2.5 M_sun giant hosting a planet of m_2sini=3.0 M_J in a 692 d orbit with e=0.12. The star also shows possible additional periodicity of about 200 d and 1880 d with velocity amplitude of ~7--10 m/s, although these are not significant at this stage. nu Oph (K0 III) is a 3.0 M_sun giant and has two brown-dwarf companions of m_2sini= 24 M_J and 27 M_J, in orbits with P=530.3 d and 3190 d, and e=0.126 and 0.17, respectively, which were independently announced by Quirrenbach et al. (2011). The ratio of the periods is close to 1:6, suggesting that the companions are in mean motion resonance. We also independently confirmed planets around k CrB (K0 III-IV) and HD 210702 (K1 IV), which had been announced by Johnson et al. (2008) and Johnson et al. (2007a), respectively. All of the orbital parameters we obtained are consistent with the previous results.

قيم البحث

اقرأ أيضاً

We report the detections of two substellar companions orbiting around evolved intermediate-mass stars from precise Doppler measurements at Subaru Telescope and Okayama Astrophysical Observatory. HD 145457 is a K0 giant with a mass of 1.9 M_sun and ha s a planet of minimum mass m_2sini=2.9 M_J orbiting with period of P=176 d and eccentricity of e=0.11. HD 180314 is also a K0 giant with 2.6 M_sun and hosts a substellar companion of m_2sin i=22 M_J, which falls in brown-dwarf mass regime, in an orbit with P=396 d and e=0.26. HD 145457 b is one of the innermost planets and HD 180314 b is the seventh candidate of brown-dwarf-mass companion found around intermediate-mass evolved stars.
130 - Sasha Hinkley 2015
We report the detection of seven low mass companions to intermediate-mass stars (SpT B/A/F; $M$$approx$1.5-4.5 solar masses) in the Scorpius-Centaurus Association using nonredundant aperture masking interferometry. Our newly detected objects have con trasts $Delta L$$approx$4-6, corresponding to masses as low as $sim$20 Jupiter masses and mass ratios of $q$$approx$0.01-0.08, depending on the assumed age of the target stars. With projected separations $rho$$approx$10-30 AU, our aperture masking detections sample an orbital region previously unprobed by conventional adaptive optics imaging of intermediate mass Scorpius-Centaurus stars covering much larger orbital radii ($approx$30-3000 AU). At such orbital separations, these objects resemble higher ma
It has been suggested that besides stellar companions, substellar objects in close orbits may be able to trigger mass loss in a common envelope phase and form hot subdwarfs. In an ongoing project we search for close substellar companions combining ti me resolved high resolution spectroscopy with photometry. We determine the fraction of as yet undetected radial velocity variable systems from a sample of 27 apparently single sdB stars to be 16%. We discovered low-mass stellar companions to the He-sdB CPD-20 1123 and the pulsator KPD 0629-0016. The brown dwarf reported to orbit the eclipsing binary SDSS J0820+0008 could be confirmed by an analysis of high resolution spectra taken with UVES. Reflection effects have been detected in the light curves of the known sdB binaries CPD-64 481 and BPS CS 22169-0001. The inclinations of these systems must be much higher than expected and the most likely companion masses are in the substellar regime. Finally, we determined the orbit of the sdB binary PHL 457, which has a very small radial velocity amplitude and may host the lowest mass substellar companion known. The implications of these new results for the open question of sdB formation are discussed.
(shorter version)The aim of this work is to search for planets around intermediate-mass stars in open clusters by using RV data obtained with HARPS from an extensive survey with more than 15 years of observations for a sample of 142 giant stars in 17 open clusters. We present the discovery of a periodic RV signal compatible with the presence of a planet candidate in the 1.15 Gyr open cluster IC4651 orbiting the 2.06 M$_odot$ star No. 9122. If confirmed, the planet candidate would have a minimum mass of 7.2 M$_{J}$ and a period of 747 days. However, we also find that the FWHM of the CCF varies with a period close to the RV, casting doubts on the planetary nature of the signal. We also provide refined parameters for the previously discovered planet around NGC2423 No. 3 but show evidence that the BIS of the CCF is correlated with the RV during some of the observing periods. This fact advises us that this might not be a real planet and that the RV variations could be caused by stellar activity and/or pulsations. Finally, we show that the previously reported signal by a brown dwarf around NGC4349 No. 127 is presumably produced by stellar activity modulation. The long-term monitoring of several red giants in open clusters has allowed us to find periodic RV variations in several stars. However, we also show that the follow-up of this kind of stars should last more than one orbital period to detect long-term signals of stellar origin. This work warns that although it is possible to detect planets around red giants, large-amplitude, long-period RV modulations do exist in such stars that can mimic the presence of an orbiting planetary body. Therefore, we need to better understand how such RV modulations behave as stars evolve along the RGB and perform a detailed study of all the possible stellar-induced signals (e.g. spots, pulsations, granulation) to comprehend the origin of RV variations.
We report on the detection of four extrasolar planets orbiting evolved intermediate-mass stars from a precise Doppler survey of G and K giants at Okayama Astrophysical Observatory. All of the host stars are considered to be formerly early F-type or A -type dwarfs when they were on the main sequence. 14 And (K0 III) is a clump giant with a mass of 2.2 M_solar and has a planet of minimum mass m_2sin i=4.8 M_Jup in a nearly circular orbit with a 186 day period. This is one of the innermost planets around evolved intermediate-mass stars and such planets have only been discovered in clump giants. 81 Cet (G5 III) is a clump giant with 2.4 M_solar hosting a planet of m_2sin i=5.3 M_Jup in a 953 day orbit with an eccentricity of e=0.21. 6 Lyn (K0 IV) is a less evolved subgiant with 1.7 M_solar and has a planet of m_2sin i=2.4 M_Jup in a 899 day orbit with e=0.13. HD 167042 (K1 IV) is also a less evolved star with 1.5 M_solar hosting a planet of m_2sin i=1.6 M_Jup in a 418 day orbit with e=0.10. This planet was independently announced by Johnson et al. (2008, ApJ, 675, 784). All of the host stars have solar or sub-solar metallicity, which supports the lack of metal-rich tendency in planet-harboring giants in contrast to the case of dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا