ترغب بنشر مسار تعليمي؟ اضغط هنا

A radio study of the superwind galaxy NGC1482

101   0   0.0 ( 0 )
 نشر من قبل D. J. Saikia
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ananda Hota JAP




اسأل ChatGPT حول البحث

We present multifrequency radio continuum as well as HI observations of the superwind galaxy NGC1482, with both the GMRT and the VLA. This galaxy has a remarkable hourglass-shaped optical emission line outflow as well as bi-polar soft X-ray bubbles on opposite sides of the galactic disk. The low-frequency, lower-resolution radio observations show a smooth structure. From the non-thermal emission, we estimate the available energy in supernovae, and examine whether this would be adequate to drive the observed superwind outflow. The high-frequency, high-resolution radio images of the central starburst region located at the base of the superwind bi-cone shows one prominent peak and more extended emission with substructure. This image has been compared with the infrared, optical red-continuum, H_alpha, and, soft and hard X-ray images from Chandra. The peak of infrared emission is the only feature which is coincident with the prominent radio peak, and possibly defines the centre of the galaxy. The HI observations with the GMRT show two blobs of emission on opposite sides of the central region. These are rotating about the centre of the galaxy and are located at ~2.4 kpc from it. In addition, these observations also reveal a multicomponent HI-absorption profile against the central region of the radio source, with a total width of ~250 km/s. The extreme blue- and red-shifted absorption components are at 1688 and 1942 km/s respectively, while the peak absorption is at 1836 km/s. This is consistent with the heliocentric systemic velocity of 1850+/-20 km/s, estimated from a variety of observations. We discuss possible implications of these results.


قيم البحث

اقرأ أيضاً

64 - Youichi Ohyama 2018
We report our optical spectroscopic study of the nucleus and its surrounding region of a nearby luminous infrared galaxy NGC 4418. This galaxy has been known to host a compact obscured nucleus, showing distinct characteristics such as a very compact ($sim 20$ pc) sub-mm and mid-infrared core and dusty circumnuclear region with massive molecular gas concentration. We detected dusty superwind outflow at $gtrsim 1$ kpc scale along the disk semiminor axis in both shock-heated emission lines and enhanced interstellar Na D absorption. This superwind shows basic characteristics similar to those of the prototypical superwind in the starburst galaxy M82, such as a kpc-scale extended structure of gas and dust along the disk minor axis, outflowing components (multiphase gas and dust), physical conditions of the ionized gas, and monotonically blueshifting radial velocity field with increasing distance from the nucleus on the front side of the superwind. We also detected a moderately extinct starburst population in the SDSS nuclear spectrum with the burst age of $simeq 10$ Myr and stellar mass of $simeq 1times 10^7 M_mathrm{odot}$. It is powerful enough to drive the superwind within the dynamical age of the superwind ($simeq 10$ Myr). On the basis of comparison between this starburst--superwind scenario and the observations in terms of the burst age, stellar mass, infrared luminosity, and obscuration in the optical bands, we argue that this superwind-driving starburst is separate from the sub-mm core even if the core is a very young star cluster. Therefore, this galaxy hosts both the enshrouded compact core and the superwind-driving circumnuclear starburst.
76 - R. J. Wilman 2005
High-velocity galactic outflows, driven by intense bursts of star formation and black hole accretion, are invoked by current theories of galaxy formation to terminate star formation in the most massive galaxies and to deposit heavy elements in the in tergalactic medium. From existing observational evidence on high-redshift galaxies, it is unclear whether such outflows are localized to regions of intense star formation just a few kiloparsecs in extent, or whether they instead have a significant impact on the entire galaxy and its surroundings. Here we present two-dimensional spectroscopy of a star-forming galaxy at redshift z=3.09 (seen 11.5 Gyr ago, when the Universe was 20 per cent of its current age): its spatially extended Ly-alpha emission appears to be absorbed by HI in a foreground screen covering the entire galaxy, with a lateral extent of at least 100 kpc and remarkable velocity coherence. It was plausibly ejected from the galaxy during a starburst several 1E8 yr earlier and has subsequently swept up gas from the surrounding intergalactic medium and cooled. This demonstrates the galaxy-wide impact of high-redshift superwinds.
We report the discovery of a double-double radio source (DDRS) J0028+0035. We observed it with LOFAR, GMRT, and the VLA. By combining our observational data with those from the literature, we gathered an appreciable set of radio flux density measurem ents covering the range from 74 MHz to 14 GHz. This enabled us to carry out an extensive review of physical properties of the source and its dynamical evolution analysis. In particular, we found that, while the age of the large-scale outer lobes is about 245 Myr, the renewal of the jet activity, which is directly responsible for the double-double structure, took place only about 3.6 Myr ago after about 11 Myr long period of quiescence. Another important property typical for DDRSs and also present here is that the injection spectral indices for the inner and the outer pair of lobes are similar. The jet powers in J0028+0035 are similar too. Both these circumstances support our inference that it is, in fact, a DDRS which was not recognized as such so far because of the presence of a coincident compact object close to the inner double so that the centre of J0028+0035 is apparently a triple.
We present new optical images ($B$, $V$, and H$alpha$) of the archetypical starburst/superwind galaxy M82 obtained with the 8.2 m Subaru Telescope to reveal new detailed structures of the superwind-driven nebula and the high-latitude dark lanes. The emission-line nebula is decomposed into (1) a ridge-dominated component comprising numerous filament/loop sub-structures whose overall morphology appears as a pair of narrow cylinders, and (2) a diffuse component extended over much wider opening angle from the nucleus. We suggest that these two components have different origins. The ridge-dominated component appears as a pair of cylinders rather than a pair of cones. Since this morphological property is similar to that of hot plasma probed by soft X-ray, this component seems to surround the hot plasma. On the other hand, the diffuse component may arise from dust grains which scatter stellar light from the galaxy. Since inner region of this component is seen over the prominent ^^ ^^ X-shaped dark lanes streaming out from the nuclear region and they can be reproduced as a conical distribution of dust grains, there seems to be a dusty cold outflow as well as the hot one probed by soft X-ray and shock-excited optical emission lines. If this is the case, the presence of such high-latitude dust grains implies that neutral gaseous matter is also blown out during the course of the superwind activity.
During the course of our deep optical imaging survey for Ly alpha emitters at z approximately 5.7 in the field around the z=5.74 quasar SDSSp J104433.04-012502.2, we have found a candidate strong emission-line source. Follow-up optical spectroscopy s hows that the emission line profile of this object is asymmetric, showing excess red-wing emission. These properties are consistent with an identification of Ly alpha emission at a redshift of z=5.687 +/- 0.002. The observed broad line width, Delta V_{FWHM} ~= 340 km s^{-1} and excess red-wing emission also suggest that this object hosts a galactic superwind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا