ترغب بنشر مسار تعليمي؟ اضغط هنا

Multifrequency study of a double-double radio galaxy J0028+0035

96   0   0.0 ( 0 )
 نشر من قبل Andrzej Marecki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a double-double radio source (DDRS) J0028+0035. We observed it with LOFAR, GMRT, and the VLA. By combining our observational data with those from the literature, we gathered an appreciable set of radio flux density measurements covering the range from 74 MHz to 14 GHz. This enabled us to carry out an extensive review of physical properties of the source and its dynamical evolution analysis. In particular, we found that, while the age of the large-scale outer lobes is about 245 Myr, the renewal of the jet activity, which is directly responsible for the double-double structure, took place only about 3.6 Myr ago after about 11 Myr long period of quiescence. Another important property typical for DDRSs and also present here is that the injection spectral indices for the inner and the outer pair of lobes are similar. The jet powers in J0028+0035 are similar too. Both these circumstances support our inference that it is, in fact, a DDRS which was not recognized as such so far because of the presence of a coincident compact object close to the inner double so that the centre of J0028+0035 is apparently a triple.



قيم البحث

اقرأ أيضاً

165 - M. Jamrozy 2009
One of the striking examples of episodic activity in active galactic nuclei are the double-double radio galaxies (DDRGs) with two pairs of oppositely-directed radio lobes from two different cycles of activity. We illustrate, using the DDRG J1453+3308 as an example, that observations over a wide range of frequencies using both the GMRT and the VLA can be used to determine the spectra of the inner and outer lobes, estimate their spectral ages, estimate the time scales of episodic activity, and examine any difference in the injection spectra in the two cycles of activity. Low-frequency GMRT observations also suggest that DDRGs and triple-double radio galaxies are rather rare.
80 - S. Nandi , D.J. Saikia , R. Roy 2019
In order to understand the possible mechanisms of recurrent jet activity in radio galaxies and quasars, which are still unclear, we have identified such sources with a large range of linear sizes (220 $-$ 917 kpc), and hence time scales of episodic a ctivity. Here we present high-sensitivity 607-MHz Giant Metrewave Radio Telescope (GMRT) images of 21 possible double-double radio galaxies (DDRGs) identified from the FIRST survey to confirm their episodic nature. These GMRT observations show that none of the inner compact components suspected to be hot-spots of the inner doubles are cores having a flat radio spectrum, confirming the episodic nature of these radio sources. We have indentified a new DDRG with a candidate quasar, and have estimated the upper spectral age limits for eight sources which showed marginal evidence of steepening at higher frequencies. The estimated age limits (11 $-$ 52 Myr) are smaller than those of the large-sized ($sim$ 1 Mpc) DDRGs.
We present a study of the peculiar radio galaxy B 1834+620. It is characterised by the presence of a 420-kpc large edge-brightened radio source which is situated within, and well aligned with, a larger (1.66 Mpc) radio source. Both sources apparently originate in the same host galaxy, which has a R_s-magnitude of 19.7 and a redshift of 0.5194, as determined from the strong emission-lines in the spectrum. We have determined the rotation measures towards this source, as well as the radio spectral energy distribution of its components. The radio spectrum of the large outer source is steeper than that of the smaller inner source. The radio core has a spectrum that peaks at a frequency of a few GHz. The rotation measures towards the four main components are quite similar, within $sim!2$ rad m$^{-2}$ of 58 rad m$^{-2}$. They are probably largely galactic in origin. We have used the presence of a bright hotspot in the northern outer lobe to constrain the advance velocity of the inner radio lobes to the range between 0.19c and 0.29c, depending on the orientation of the source. This corresponds to an age of this structure in the range between 2.6 and 5.8 Myr. We estimate a density of the ambient medium of the inner lobes of $la 1.6 times 10^{-30}$ gr,cm$^{-3}$ (particle density $la 8 times 10^{-7}$ cm$^{-3}$). A low ambient density is further supported by the discrepancy between the large optical emission-line luminosity of the host galaxy and the relatively low radio power of the inner lobes.
Double-double radio galaxies (DDRGs) represent a short but unique phase in the life-cycle of some of the most powerful radio-loud active galactic nuclei (RLAGN). These galaxies display large-scale remnant radio plasma in the intergalactic medium left behind by a past episode of active galactic nuclei (AGN) activity, and meanwhile, the radio jets have restarted in a new episode. The knowledge of what causes the jets to switch off and restart is crucial to our understanding of galaxy evolution, while it is important to know if DDRGs form a host galaxy dichotomy relative to RLAGN. We utilised the LOFAR Two-Metre Sky Survey DR1, using a visual identification method to compile a sample of morphologically selected candidate DDRGs, showing two pairs of radio lobes. To confirm the restarted nature in each of the candidate sources, we obtained follow-up observations with the VLA at higher resolution to observe the inner lobes or restarted jets, the confirmation of which created a robust sample of 33 DDRGs. We created a comparison sample of 777 RLAGN from the DR1 catalogue, and compared the optical and infrared magnitudes and colours of their host galaxies. We find that there is no statistically significant difference in the brightness of the host galaxies between double-doubles and single-cycle RLAGN. The DDRG and RLAGN samples also have similar distributions in WISE mid-infrared colours, indicating similar ages of stellar populations and dust levels in the hosts of DDRGs. We conclude that DDRGs and normal RLAGN are hosted by galaxies of the same type, and that DDRG activity is simply a normal part of the life cycle of RLAGN. Restarted jets, particularly for the class of low-excitation radio galaxies, rather than being a product of a particular event in the life of a host galaxy, must instead be caused by smaller scale changes, such as in the accretion system surrounding the black hole.
We present an X-ray spectral analysis of the nearby double radio relic merging cluster Abell 3376 ($z$ = 0.046), observed with the $Suzaku$ XIS instrument. These deep ($sim$360 ks) observations cover the entire double relic region in the outskirts of the cluster. These diffuse radio structures are amongst the largest and arc-shaped relics observed in combination with large-scale X-ray shocks in a merging cluster. We confirm the presence of a stronger shock (${cal M}_{rm{W}}$ = 2.8 $pm~0.4$) in the western direction at $rsim26$, derived from a temperature and surface brightness discontinuity across the radio relic. In the East, we detect a weaker shock (${cal M}_{rm{E}}$ = 1.5 $pm~0.1$) at $rsim8$, possibly associated to the notch of eastern relic, and a cold front at $rsim3$. Based on the shock speed calculated from the Mach numbers, we estimate that the dynamical age of the shock front is $sim$0.6 Gyr after core passage, indicating that Abell 3376 is still an evolving merging cluster and that the merger is taking place close to the plane of the sky. These results are consistent with simulations and optical and weak lensing studies from the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا