ترغب بنشر مسار تعليمي؟ اضغط هنا

N-body/SPH study of the evolution of dwarf galaxies in a cluster environment

83   0   0.0 ( 0 )
 نشر من قبل Dolf Michielsen
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using an N-body/SPH code, we explore the scenario in which a dwarf elliptical galaxy (dE) is subjected to ram-pressure stripping due to the intracluster medium (ICM). Our simulations show that while (i) smaller dEs lose their ISM almost immediately after entering the cluster, (ii) more massive dEs are able to retain their gas for considerable timespans.


قيم البحث

اقرأ أيضاً

We investigate the stellar populations in a sample of 89 faint (M*+2 to M*+4) red galaxies in the Coma cluster, using high S/N spectroscopy from the MMT. Our sample is drawn from two 1-degree fields, one centred on the cluster core and the other loca ted a degree to the south west of the cluster centre. For a comparison sample we use published high-S/N data for red-sequence galaxies in the Shapley Supercluster. We use state-of-the-art stellar population models to infer the SSP-equivalent age and metallicity (Fe/H) for each galaxy, as well as the abundances of the light elements Mg, Ca, C and N. The ages of the Coma dwarfs span a wide range from <2 Gyr to >10 Gyr, with a strong environmental dependence. The oldest galaxies are found only in the core, while most of the galaxies in the outer south-west field have ages ~3 Gyr. The galaxies have a metallicity range -1.0 < [Fe/H] < 0.0, and follow the same age-metallicity-mass plane as high-mass galaxies, but with increased intrinsic scatter. The Mg/Fe abundance ratios are on average slightly super-solar, and span a range -0.1 < [Mg/Fe] < +0.4. The highest Mg enhancements are found only in the cluster core, while solar ratios predominate in the outskirts. Depending on the assumed star-formation history (quenched versus burst-dominated), the number of dwarf galaxies on the red sequence in the Coma core has doubled since z~0.4-0.7. These estimates bracket the red-sequence growth timescales found by direct studies of distant clusters. In the south-west field, the red sequence was established only at z~0.1-0.2. Our observations confirm previous indications of very recently quenched star formation in this part of the cluster. Our results support the picture in which much of the cluster passive dwarf population was generated by environment-driven transformation of infalling late-type galaxies.
We present the results of a spectroscopic survey of 675 bright (16.5<Bj<18) galaxies in a 6 degree field centred on the Fornax cluster with the FLAIR-II spectrograph on the UK Schmidt Telescope. We measured redshifts for 516 galaxies of which 108 wer e members of the Fornax Cluster. Nine of these are new cluster members previously misidentified as background galaxies. The cluster dynamics show that the dwarf galaxies are still falling into the cluster whereas the giants are virialised. Our spectral data reveal a higher rate of star formation among the dwarf galaxies than suggested by morphological classification: 35 per cent have H-alpha emission indicative of star formation but only 19 per cent were morphologically classified as late-types. The distribution of scale sizes is consistent with evolutionary processes which transform late-type dwarfs to early-type dwarfs. The fraction of dwarfs with active star formation drops rapidly towards the cluster centre. The star-forming dwarfs are concentrated in the outer regions of the cluster, the most extreme in an infalling subcluster. We estimate gas depletion time scales for 5 dwarfs with detected HI emission: these are long (of order 10 Gyr), indicating that active gas removal must be involved if they are transformed into gas-poor dwarfs as they fall further into the cluster. In agreement with our previous results, we find no compact dwarf elliptical (M32-like) galaxies in the Fornax Cluster.
Recent observations suggest that dwarf galaxies pervade the universe, for they have been encountered in large numbers in all the environments. However, we present evidence that suggests dwarf galaxies may be subject to strong dynamical processes in h igh density environments, the combined effects of multiple encounters and the tidal effects due to the potential well of rich clusters could result in the effective disruption of dwarf galaxies in the clusters central regions. Alternatively, the lack of dwarf galaxies in rich environments has been interpreted in terms of a density-morphology relation: dwarf galaxies prefer low density environments (Phillipps et al. 1998). We argue that such an explanation cannot account for the relationship between the cD halo luminosity and the gas mass in the ICM, whereas the dwarf disruption scenario proposed by Lopez-Cruz et al. (1997) addresses this naturally.
196 - E. Toloba 2009
We present new observational results on the kinematical, morphological, and stellar population properties of a sample of 21 dEs located both in the Virgo cluster and in the field, which show that 52% of the dEs i) are rotationally supported, ii) exhi bit structural signs of typical rotating systems such as discs, bars or spiral arms, iii) are younger (~3 Gyr) than non-rotating dEs, and iv) are preferentially located either in the outskirts of Virgo or in the field. This evidence is consistent with the idea that rotationally supported dwarfs are late type spirals or irregulars that recently entered the cluster and lost their gas through a ram pressure stripping event, quenching their star formation and becoming dEs through passive evolution. We also find that all, but one, galaxies without photometric hints for hosting discs are pressure supported and are all situated in the inner regions of the cluster. This suggests a different evolution from the rotationally supported systems. Three different scenarios for these non-rotating galaxies are discussed (in situ formation, harassment and ram pressure stripping).
Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work don e on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed, using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way-like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15-65 kpc/h at the relative velocities of 1500-1600 km/s. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy-cluster interactions, we claim that the role of the galaxy-galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy-cluster interactions, depending on the dynamical history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا