ترغب بنشر مسار تعليمي؟ اضغط هنا

Dwarf Galaxies in Clusters: the Effects of a Violent Environment

51   0   0.0 ( 0 )
 نشر من قبل Omar Lopez-Cruz
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations suggest that dwarf galaxies pervade the universe, for they have been encountered in large numbers in all the environments. However, we present evidence that suggests dwarf galaxies may be subject to strong dynamical processes in high density environments, the combined effects of multiple encounters and the tidal effects due to the potential well of rich clusters could result in the effective disruption of dwarf galaxies in the clusters central regions. Alternatively, the lack of dwarf galaxies in rich environments has been interpreted in terms of a density-morphology relation: dwarf galaxies prefer low density environments (Phillipps et al. 1998). We argue that such an explanation cannot account for the relationship between the cD halo luminosity and the gas mass in the ICM, whereas the dwarf disruption scenario proposed by Lopez-Cruz et al. (1997) addresses this naturally.


قيم البحث

اقرأ أيضاً

72 - S.Bardelli , E.Zucca , T.Venturi 2000
Rich superclusters are the ideal environment for the detection of cluster mergings, because the high peculiar velocities induced by the enhanced local density of the large-scale structure favour the cluster-cluster collisions, in the same way as seen in the simulations. The Shapley Concentration supercluster represents a unique laboratory where it is possible to follow cluster mergings and to test related astrophysical consequences, as the formation of shocks, radio halos, relics and wide angle tail radiosources, and the presence of galaxies with enhanced star formation. We present the results of an extensive multiwavelength survey of the central part of the Shapley Concentration, with the use of optical spectra, radio and X-ray data.
We present the properties of the globular clusters (GCs) and nuclear star clusters (NSCs) of low-mass ($10^{5.5}<M_star<10^{8.5}$ $M_odot$) early-type satellites of Milky Way-like and small group hosts in the Local Volume (LV) using deep, ground-base d data from the ongoing Exploration of Local VolumE Satellites (ELVES) Survey. This sample of 177 dwarfs significantly increases the statistics for studying the star clusters of dwarfs in low-density environments, offering an important comparison to samples from nearby galaxy clusters. The LV dwarfs exhibit significantly lower nucleation fractions at fixed galaxy mass than dwarfs in nearby clusters. The mass of NSCs of LV dwarfs show a similar scaling of $M_{star,mathrm{NSC}}propto M_{star,mathrm{gal}}^{0.4}$ as that found in clusters but offset to lower NSC masses. To deal with foreground/background contamination in the GC analysis, we employ both a statistical subtraction and Bayesian approach to infer the average GC system properties from all dwarfs simultaneously. We find that the GC occupation fraction and average abundance are both increasing functions of galaxy stellar mass, and the LV dwarfs show significantly lower average GC abundance at fixed galaxy mass than a comparable sample of Virgo dwarfs analyzed in the same way, demonstrating that GC prevalence also shows an important secondary dependence on the dwarfs environment. This result strengthens the connection between GCs and NSCs in low-mass galaxies. We discuss these observations in the context of modern theories of GC and NSC formation, finding that the environmental dependencies can be well-explained by these models.
We develop a simple analytical criterion to investigate the role of the environment on the onset of star formation. We will consider the main external agents that influence the star formation (i.e. ram pressure, tidal interaction, Rayleigh-Taylor and Kelvin-Helmholtz instabilities) in a spherical galaxy moving through an external environment. The theoretical framework developed here has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy. We develop an analytic formalism to solve the fluid dynamics equations in a non-inertial reference frame mapped with spherical coordinates. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. The solution presented here is quite general, allowing us to investigate most kinds of orbits allowed in a gravitationally bound system of stars in interaction with a major massive companion. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system (as a dwarf galaxy or a globular cluster) on its surrounding environment useful in theoretical interpretations of numerical results as well as observational applications. We show how spherical coordinates naturally enlighten the interpretation of the two-fluids instability in a geometry that directly applies to astrophysical case. This criterion predicts the threshold value for the onset of star formation in a mass vs. size space for any orbit of interest. Moreover, we show for the first time the theoretical dependencies of the different instability phenomena acting on a system in a fully analytical way.
Data are presently available on the luminosities and half-light radii of 101 globular clusters associated with low-luminosity parent galaxies. The luminosity distribution of globulars embedded in dwarf galaxies having $M_{v} > -16$ is found to differ dramatically from that for globular clusters surrounding giant host galaxies with $M_{v} < -16$. The luminosity distribution of globular clusters in giant galaxies peaks at $M_{v} sim -7.5$, whereas that for dwarfs is found to increases monotonically down to the completeness limit of the cluster data at $M_{v} sim -5.0$. Unexpectedly, the power law distribution of the luminosities of globular clusters hosted by dwarf galaxies is seen to be much flatter than the that of bright unevolved part of the luminosity distribution of globular clusters associated with giant galaxies. The specific frequency of globular clusters that are fainter than $M_{v} = -7.5$ is found to be particularly high in dwarf galaxies. The luminosity distribution of the LMC globular clusters is similar to that in giant galaxies, and differs from those of the globulars in dwarf galaxies. The present data appear to show no strong dependence of globular cluster luminosity on the morphological types of their parent galaxies. No attempt is made to explain the unexpected discovery that the luminosity distribution of globular clusters is critically dependent on parent galaxy luminosity (mass?), but insensitive to the morphological type of their host galaxy.
We investigate whether the large scale structure environment of galaxy clusters imprints a selection bias on Sunyaev Zeldovich (SZ) catalogs. Such a selection effect might be caused by line of sight (LoS) structures that add to the SZ signal or conta in point sources that disturb the signal extraction in the SZ survey. We use the Planck PSZ1 union catalog (Planck Collab- oration et al. 2013a) in the SDSS region as our sample of SZ selected clusters. We calculate the angular two-point correlation function (2pcf) for physically correlated, foreground and background structure in the RedMaPPer SDSS DR8 catalog with respect to each cluster. We compare our results with an optically selected comparison cluster sample and with theoretical predictions. In contrast to the hypothesis of no environment-based selection, we find a mean 2pcf for background structures of -0.049 on scales of $lesssim 40$, significantly non-zero at $sim 4 sigma$, which means that Planck clusters are more likely to be detected in regions of low background density. We hypothesize this effect arises either from background estimation in the SZ survey or from radio sources in the background. We estimate the defect in SZ signal caused by this effect to be negligibly small, of the order of $sim 10^{-4}$ of the signal of a typical Planck detection. Analogously, there are no implications on X-ray mass measurements. However, the environ- mental dependence has important consequences for weak lensing follow up of Planck galaxy clusters: we predict that projection effects account for half of the mass contained within a 15 radius of Planck galaxy clusters. We did not detect a background underdensity of CMASS LRGs, which also leaves a spatially varying redshift dependence of the Planck SZ selection function as a possible cause for our findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا