ﻻ يوجد ملخص باللغة العربية
We present the results of a comprehensive wide field search for transiting ``Hot Jupiter planets (1d<P<16d) in the globular cluster 47 Tucanae. Motivated by the core null result of Gilliland and coworkers, this work further addresses the question of giant planet frequency in 47 Tuc by observing, from the ground, a 52x52 field centered on the cluster for 30.4 nights. Hence this work is most sensitive to the uncrowded outer regions of the cluster and concentrates on 21,920 main sequence stars (~solar in mass). This work comprises the largest ground-based transit search of a globular cluster to date. Monte Carlo simulations predict that seven planets should be present in our dataset, if 47 Tuc has the same planetary frequency observed in the solar neighbourhood. A detailed search with a custom developed detection algorithm found no transit events. Being consistent with the cluster core null detection of Gilliland and coworkers, our result indicates that system metallicity is the dominant effect inhibiting Hot Jupiter formation in this environment.
We present a short progress report of a comprehensive search for variability in the globular cluster 47 Tucanae. Using the MSSSO 40 telescope and a combined V+R filter, we are searching for variability across a 52x52 field centered on the cluster. Th
Using images from the Hubble Space Telescope Wide-Field Camera 3, we measure the rate of diffusion of stars through the core of the globular cluster 47 Tucanae using a sample of young white dwarfs identified in these observations. This is the first d
We report the first wideband observations of pulsars C, D and J in the globular cluster 47Tucanae (NGC 104) using the Ultra-Wideband Low (UWL) receiver system recently installed on the Parkes 64 m radio telescope. The wide frequency range of the UWL
We present the results of a comprehensive search for stellar variability in the globular cluster 47 Tucanae. Using the Mount Stromlo 40-inch (1m) telescope at Siding Spring Observatory and a combined V+R filter, we have detected 100 variable stars ac
Aims. Hot Jupiters are thought to belong to single-planet systems. Somewhat surprisingly, some hot Jupiters have been reported to exhibit transit timing variations (TTVs). The aim of this paper is to identify the origin of these observations, identif