ﻻ يوجد ملخص باللغة العربية
Planetary Nebulae (PNe) are the result of heavy mass loss of the asymptotic giant branch (AGB) stars. They are understood in terms of Kwoks (1978) interacting-winds model as the product of the mass-loss history on the AGB and the central star (CS) evolution. Since the CS are close to the end of nuclear burning and at their hottest stage of evolution then, precise modeling of these pre-white dwarfs is a prerequisite in order to calculate reliable ionizing fluxes which are crucial input for the presently available 3D photoionization codes. In the framework of a systematic study of PNe which show evidence for an interaction with the ISM, we present a NLTE analysis of their CS.
The analysis of Planetary Nebulae (PNe) provides a tool to investigate the properties of their exciting central stars (CSPN) at the moment of the PN ejection as well as on the properties of the ambient interstellar medium (ISM). The spectral analysis
We present preliminary results obtained from the analysis of very deep echelle spectra of a dozen planetary nebulae with [WC] or weak emission lines (wels) central stars. The computed abundance discrepancy factors (ADFs) are moderate, with values low
Spectral analysis by means of NLTE model atmospheres has presently arrived at a high level of sophistication. High-resolution spectra of central stars of planetary nebulae can be reproduced in detail from the infrared to the X-ray wavelength range.
Thanks to SAURON integral-field observations we uncovered the Planetary Nebulae (PNe) populations inhabiting the central and nuclear regions of our galactic neighbours M32 and M31, respectively, and discuss the significant differences between their c
We have carried out an HI survey towards X-ray central compact objects (CCOs) inside supernova remnants (SNRs) which shows that many of them are placed within local HI minima. The nature of these minima is not clear, but the most likely explanation i