ترغب بنشر مسار تعليمي؟ اضغط هنا

The Central PNe Populations of External Galaxies with SAURON

137   0   0.0 ( 0 )
 نشر من قبل Sarzi Marc
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marc Sarzi




اسأل ChatGPT حول البحث

Thanks to SAURON integral-field observations we uncovered the Planetary Nebulae (PNe) populations inhabiting the central and nuclear regions of our galactic neighbours M32 and M31, respectively, and discuss the significant differences between their corresponding PNe luminosity functions in light of the properties of their parent stellar populations. In particular, we conclude that the lack of bright PNe in the nuclear regions of M31 is likely linked to the nearly Solar value for the stellar metallicity, consistent with previous suggestions that a larger metallicity would bias the Horizontal-Branch (HB) populations toward bluer colors, with fewer red HB stars capable of producing PNe and more blue HB stars that instead could contribute to the far-UV flux that is observed in metal-rich early-type galaxies and, incidentally, also in the nucleus of M31.

قيم البحث

اقرأ أيضاً

We present selected results from integral-field spectroscopy of 48 early-type galaxies observed as part of the SAURON survey. Maps of the Hbeta, Fe5015, Mgb and Fe5270 indices in the Lick/IDS system were derived for each of the survey galaxies. The m etal line strength maps show generally negative gradients with increasing radius roughly consistent with the morphology of the light profiles. Remarkable deviations from this general trend exist, particularly the Mgb isoindex contours appear to be flatter than the isophotes of the surface brightness for about 40% of our galaxies without significant dust features. Generally these galaxies exhibit significant rotation. We infer from this that the fast-rotating component features a higher metallicity and/or an increased Mg/Fe ratio as compared to the galaxy as a whole. We also use the line strengths maps to compute average values integrated over circular apertures of one effective radius, and derive luminosity weighted ages and metallicities. The lenticular galaxies show a wide range in age and metallicity estimates, while elliptical galaxies tend to occupy regions of older stellar populations.
The SAURON project will deliver two-dimensional spectroscopic data of a sample of nearby early-type galaxies with unprecedented quality. In this paper, we focus on the mapping of their stellar populations using the SAURON data, and present some preliminary results on a few prototypical cases.
Extragalactic Planetary Nebulae (PNe) are not only useful as distance signposts or as tracers of the dark-matter content of their host galaxies, but constitute also good indicators of the main properties of their parent stellar populations. Yet, so f ar, the properties of PNe in the optical regions of galaxies where stellar population gradients can be more extreme have remained largely unexplored, mainly because the detection of PNe with narrow-band imaging or slit-less spectroscopy is considerably hampered by a strong stellar background. Integral-field spectroscopy (IFS) can overcome this limitation, and here we present a study of the PN population in the nearby compact elliptical M32. Using SAURON data taken with just two 10-minutes-long pointings we have doubled the number of known PNe within the effective radius of M32, detecting PNe five times fainter than previously found in narrow-band images that collected nearly the same number of photons. Furthermore, by carefully accounting for the incompleteness of our survey we could conclude, despite having only 15 sources, that the central PNe population of M32 is consistent with the generally adopted shape for the PNe Luminosity Function and its typical normalization observed in early-type galaxies. Finally, owing to the proximity of M32 and to UV images taken with HST, we could identify the most likely candidates for the central star of a subset of our detected PNe and conclude that these stars are affected by substantial amounts of circumstellar dust extinction, a finding that could reconcile the intriguing discrepancy previously reported in M32 between model predictions and observations for the later stages of stellar evolution. Considering the modest time investment on a 4m-class telescope that delivered these results, this work illustrates the potential of future IFS studies for the central PNe population of early-type galaxies.
67 - S.I. Loubser 2014
We present detailed, high spatial and spectral resolution, long-slit observations of four central cluster galaxies (Abell 0085, 0133, 0644 and Ophiuchus) recently obtained on the Southern African Large Telescope (SALT). Our sample consists of central cluster galaxies (CCGs) with previously-observed Halpha-filaments, and have existing data from the X-ray to radio wavelength regimes available. Here, we present the detailed optical data over a broad wavelength range to probe the spatially-resolved kinematics and stellar populations of the stars. We use the Pegase.HR model with the ELODIE v3.1 stellar library to determine the star formation histories of the galaxies using full spectrum fitting. We perform single stellar population (SSP) as well as composite stellar population (CSP) fits to account for more complex star formation histories. Monte-Carlo simulations and chi 2-maps are used to check the reliability of the solutions. This, combined with the other multiwavelength data, will form a complete view of the different phases (hot and cold gas and stars) and how they interact in the processes of star formation and feedback detected in central galaxies in cooling flow clusters, as well as the influence of the host cluster. We find small, young stellar components in at least three of the four galaxies, even though two of the three host clusters have zero spectrally-derived mass deposition rates from X-ray observations.
Using far (FUV) and near (NUV) ultraviolet photometry from guest investigator programmes on the Galaxy Evolution Explorer (GALEX) satellite, optical photometry from the MDM Observatory and optical integral-field spectroscopy from SAURON, we explore t he UV-linestrength relations of the 48 nearby early-type galaxies in the SAURON sample. Identical apertures are used for all quantities, avoiding aperture mismatch. We show that galaxies with purely old stellar populations show well-defined correlations of the integrated FUV-V and FUV-NUV colours with the integrated Mgb and Hbeta absorption linestrength indices, strongest for FUV-NUV. Correlations with the NUV-V colour, Fe5015 index and stellar velocity dispersion are much weaker. These correlations put stringent constraints on the origin of the UV-upturn phenomenon in early-type galaxies, and highlight its dependence on age and metallicity. In particular, despite recent debate, we recover the negative correlation between FUV-V colour and Mg linestrength originally publicised by Burstein et al. (1988), which we refer to as the Burstein relation, suggesting a positive dependence of the UV-upturn on metallicity. We argue that the scatter in the correlations is real, and present mild evidence that a strong UV excess is preferentially present in slow-rotating galaxies. We also demonstrate that most outliers in the correlations are galaxies with current or recent star formation, some at very low levels. We believe that this sensitivity to weak star formation, afforded by the deep and varied data available for the SAURON sample, explains why our results are occasionally at odds with other recent but shallower surveys. This is supported by the analysis of a large, carefully-crafted sample of more distant early-type galaxies from the Sloan Digital Sky Survey (SDSS), more easily comparable with current and future large surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا