ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous Doppler maps of IP Peg in outburst

80   0   0.0 ( 0 )
 نشر من قبل Christina Papadaki
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Papadaki




اسأل ChatGPT حول البحث

IP Pegasi is an eclipsing dwarf nova lying above the period gap with an orbital period of 3.8h. It is the first cataclysmic variable to show evidence of spiral arms in its accretion disc. We present new time-resolved echelle spectroscopic observations of IP Peg, covering the 3900-7700 Angstrom range. This allows us to produce simultaneous Doppler Maps in 9 emission lines.



قيم البحث

اقرأ أيضاً

We analyse a unique set of time-resolved echelle spectra of the dwarf nova IP Peg, obtained at ESOs NTT with EMMI. The dataset covers the wavelength range of 4000-7500A and shows Balmer, HeI, HeII and heavier elements in emission. IP Peg was observed one day after the peak of an outburst. The trailed spectra, spectrograms and Doppler maps show characteristics typical of IP Pegasi during the early stages of its outburst. The high-ionisation line of HeII 4686A is the most centrally located line and has the greatest radial extension compared to the HeI lines. The Balmer lines extend from close to the white dwarf up to approximately 0.45 times R_L, with the outer radius gradually increasing when moving from H delta to H alpha. The application, for the first time, of the modulation Doppler tomography technique, maps any harmonically varying components present in the system configuration. We find, as expected, that part of the strong secondary star emission in Balmer and HeI lines is modulated predominantly with the cosine term, consistent with the emission originating from the irradiated front side of the mass-donor star, facing the accreting white dwarf. For the Balmer lines the level of the modulation, compared to the average emission, decreases when moving to higher series. Emission from the extended accretion disk appears to be only weakly modulated, with amplitudes of at most a few percent of the non-varying disk emission. We find no evidence of modulated emission in the spiral arms, which if present, is relatively weak at that our signal-to-noise ratio was good enough to put a lower detection limit of any modulated emission at 5--6%. Only in one arm of the HeII 4686A line, is there a possibility of modulated emission, but again, we cannot be sure this is not caused by blending with the nearby Bowen complex of lines.
122 - Takuya Matsuda 1998
The first convincing piece of evidence of spiral structure in the accretion disc in IP Pegasi was found by Steeghs et al. (1997). We performed two kinds of 2D hydrodynamic simulations, a SFS finite volume scheme and a SPH scheme, with a mass ratio of 0.5. Both results agreed well with each other. We constructed Doppler maps and line flux-binary phase relations based on density distributions, the results agreeing well with those obtained by observation.
We report the results of a time-resolved eclipse mapping of the dwarf nova IP Pegasi during the decline of its May 1993 outburst from HST/FOS fast spectroscopy covering 3 eclipses in the ultraviolet spectral range.
We present a comprehensive photometric dataset taken over the entire outburst of the eclipsing dwarf nova IP Peg in September/October 1997. Analysis of the lightcurves taken over the long rise to the peak-of-outburst shows conclusively that the outbu rst started near the centre of the disc and moved outwards. This is the first dataset that spatially resolves such an outburst. The dataset is consistent with the idea that long rise times are indicative of such `inside-out outbursts. We show how the thickness and the radius of the disc, along with the mass transfer rate change over the whole outburst. In addition, we show evidence of the secondary and the irradiation thereof. We discuss the possibility of spiral shocks in the disc; however we find no conclusive evidence of their existence in this dataset.
85 - Gavin Ramsay 2016
Symbiotic stars often contain white dwarfs with quasi-steady shell burning on their surfaces. However, in most symbiotics, the origin of this burning is unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear runaway. In June 2015, the symbiotic slow nova AG Peg was seen in only its second optical outburst since 1850. This recent outburst was of much shorter duration and lower amplitude than the earlier eruption, and it contained multiple peaks -- like outbursts in classical symbiotic stars such as Z And. We report Swift X-ray and UV observations of AG Peg made between June 2015 and January 2016. The X-ray flux was markedly variable on a time scale of days, particularly during four days near optical maximum, when the X-rays became bright and soft. This strong X-ray variability continued for another month, after which the X-rays hardened as the optical flux declined. The UV flux was high throughout the outburst, consistent with quasi-steady shell burning on the white dwarf. Given that accretion disks around white dwarfs with shell burning do not generally produce detectable X-rays (due to Compton-cooling of the boundary layer), the X-rays probably originated via shocks in the ejecta. As the X-ray photo-electric absorption did not vary significantly, the X-ray variability may directly link to the properties of the shocked material. AG Pegs transition from a slow symbiotic nova (which drove the 1850 outburst) to a classical symbiotic star suggests that shell burning in at least some symbiotic stars is residual burning from prior novae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا