ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster mergers, core oscillations, and cold fronts

299   0   0.0 ( 0 )
 نشر من قبل Eric Tittley
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use numerical simulations with hydrodynamics to demonstrate that a class of cold fronts in galaxy clusters can be attributed to oscillations of the dark matter distribution. The oscillations are initiated by the off-axis passage of a low-mass substructure. From the simulations, we derive three observable morphological features indicative of oscillations: 1) The existence of compressed isophotes; 2) The regions of compression must be alternate (opposite and staggered) and lie on an axis passing through the center of the cluster; 3) The gradient of each compression region must pass through the center of the cluster. Four of six clusters reported in the literature to have cold fronts have morphologies consistent with the presence of oscillations. The clusters with oscillations are A496, A1795, A2142, and RX J1720.1+2638. Galaxy clusters A2256 and A3667 are not consistent so the cold fronts are interpreted as group remnants. The oscillations may be able to provide sufficient energy to solve the cooling-flow problem and, importantly, provide it over an extended duration.



قيم البحث

اقرأ أيضاً

Cold fronts have been detected both in merging and in cool core clusters, where little or no sign of a merging event is present. A systematic search of sharp surface brightness discontinuities performed on a sample of 62 galaxy clusters observed with XMM-Newton shows that cold fronts are a common feature in galaxy clusters. Indeed most (if not all) of the nearby clusters (z < 0.04) host a cold front. Understanding the origin and the nature of a such frequent phenomenon is clearly important. To gain insight on the nature of cold fronts in cool core clusters we have undertaken a systematic study of all contact discontinuities detected in our sample, measuring surface brightness, temperature and when possible abundance profiles across the fronts. We measure the Mach numbers for the cold fronts finding values which range from 0.2 to 0.9; we also detect a discontinuities in the metal profile of some clusters.
90 - H. Mathis 2003
Using adiabatic hydrodynamical simulations, we follow the evolution of two symmetric cold fronts developing in the remnant of a violent z=0.3 massive cluster merger. The structure and location of the simulated cold fronts are very similar to those re cently found in X-ray cluster observations, supporting the merger hypothesis for the origin of at least some of the cold fronts. The cold fronts are preceded by an almost spherical bow shock which originates at the core and disappears after 1.6 Gyr. The cold fronts last longer and survive until z=0. We trace back the gas mass constituting the fronts and find it initially associated with the two dense cores of the merging clusters. Conversely, we follow how the energy of the gas of the initial merging cores evolves until z=0 from the merging and show that a fraction of this gas can escape from the local potential well of the sub-clumps. This release occurs as the sub-clumps reach their apocentre in an eccentric orbit and is due to decoupling between the dark matter and part of the gas in the sub-clump because of, first, heating of the gas at first close core passage and of, second, the effect of the global cluster pressure which peaks as the centrifugal acceleration of the sub-clump is maximal. The fraction of the gas of the sub-clump liberated in the outbound direction then cools as it expands adiabatically and constitutes the cold fronts.
(Context) In recent years, our understanding of the cool cores of galaxy clusters has changed. Once thought to be relatively simple places where gas cools and flows toward the centre, now they are believed to be very dynamic places where heating from the central Active Galactic Nucleus (AGN) and cooling, as inferred from active star formation, molecular gas, and Halpha nebulosity, find an uneasy energetic balance. (Aims) We want to characterize the X-ray properties of the nearby cool-core cluster Zw1742+3306, selected because it is bright at X-ray (with a flux greater than 1e-11 erg/s/cm2 in the 0.1-2.4 keV band) and Halpha wavelengths (Halpha luminosity > 1e40 erg/s). (Methods) We used Chandra data to analyze the spatial and spectral properties of the cool core of Zw1742+3306, a galaxy cluster at z=0.0757 that emits in Halpha and presents the brightest central galaxy located in a diffuse X-ray emission with multiple peaks in surface brightness. (Results) We show that the X-ray cool core of the galaxy cluster Zw1742+3306 is thermodynamically very active with evidence of cold fronts and a weak shock in the surface brightness map and of an apparently coherent, elongated structure with metallicity greater than the value measured in the surrounding ambient gas by about 50 per cent. This anisotropic structure is 280 x 90 kpc2 and is aligned with the cold fronts and with the X-ray emission on larger scales. We suggest that all these peculiarities in the X-ray emission of Zw1742+3306 are either a very fine-tuned output of a sloshing gas in the cluster core or the product of a metal-rich outflow from the central AGN.
We investigate whether the swirling cold front in the core of the Perseus Cluster of galaxies has affected the outer buoyant bubbles that originated from jets from the Active Galactic Nucleus in the central galaxy NGC1275. The inner bubbles and the O uter Southern bubble lie along a North-South axis through the nucleus, whereas the Outer Northern bubble appears rotated about 45 deg from that axis. Detailed numerical simulations of the interaction indicates that the Outer Northern bubble may have been pushed clockwise accounting for its current location. Given the common occurrence of cold fronts in cool core clusters, we raise the possibility that the lack of many clear outer bubbles in such environments may be due to their disruption by cold fronts.
Cold fronts have been observed in a large number of galaxy clusters. Understanding their nature and origin is of primary importance for the investigation of the internal dynamics of clusters. To gain insight on the nature of these features, we carry out a statistical investigation of their occurrence in a sample of galaxy clusters observed with XMM-Newton and we correlate their presence with different cluster properties. We have selected a sample of 45 clusters starting from the B55 flux limited sample by Edge et al. (1990) and performed a systematic search of cold fronts. We find that a large fraction of clusters host at least one cold front. Cold fronts are easily detected in all systems that are manifestly undergoing a merger event in the plane of the sky while the presence of such features in the remaining clusters is related to the presence of a steep entropy gradient, in agreement with theoretical expectations. Assuming that cold fronts in cool core clusters are triggered by minor merger events, we estimate a minimum of 1/3 merging events per halo per Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا