ترغب بنشر مسار تعليمي؟ اضغط هنا

On the formation of cold fronts in massive mergers

91   0   0.0 ( 0 )
 نشر من قبل Hugues Mathis
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. Mathis




اسأل ChatGPT حول البحث

Using adiabatic hydrodynamical simulations, we follow the evolution of two symmetric cold fronts developing in the remnant of a violent z=0.3 massive cluster merger. The structure and location of the simulated cold fronts are very similar to those recently found in X-ray cluster observations, supporting the merger hypothesis for the origin of at least some of the cold fronts. The cold fronts are preceded by an almost spherical bow shock which originates at the core and disappears after 1.6 Gyr. The cold fronts last longer and survive until z=0. We trace back the gas mass constituting the fronts and find it initially associated with the two dense cores of the merging clusters. Conversely, we follow how the energy of the gas of the initial merging cores evolves until z=0 from the merging and show that a fraction of this gas can escape from the local potential well of the sub-clumps. This release occurs as the sub-clumps reach their apocentre in an eccentric orbit and is due to decoupling between the dark matter and part of the gas in the sub-clump because of, first, heating of the gas at first close core passage and of, second, the effect of the global cluster pressure which peaks as the centrifugal acceleration of the sub-clump is maximal. The fraction of the gas of the sub-clump liberated in the outbound direction then cools as it expands adiabatically and constitutes the cold fronts.



قيم البحث

اقرأ أيضاً

We use numerical simulations with hydrodynamics to demonstrate that a class of cold fronts in galaxy clusters can be attributed to oscillations of the dark matter distribution. The oscillations are initiated by the off-axis passage of a low-mass subs tructure. From the simulations, we derive three observable morphological features indicative of oscillations: 1) The existence of compressed isophotes; 2) The regions of compression must be alternate (opposite and staggered) and lie on an axis passing through the center of the cluster; 3) The gradient of each compression region must pass through the center of the cluster. Four of six clusters reported in the literature to have cold fronts have morphologies consistent with the presence of oscillations. The clusters with oscillations are A496, A1795, A2142, and RX J1720.1+2638. Galaxy clusters A2256 and A3667 are not consistent so the cold fronts are interpreted as group remnants. The oscillations may be able to provide sufficient energy to solve the cooling-flow problem and, importantly, provide it over an extended duration.
Chandra and XMM-Newton observations of many clusters reveal sharp discontinuities in the surface brightness, which, unlike shocks, have lower gas temperature on the X-ray brighter side of the discontinuity. For that reason these features are called ` `cold fronts. It is believed that some cold fronts are formed when a subcluster merges with another cluster and the ram pressure of gas flowing outside the subcluster gives the contact discontinuity the characteristic curved shape. While some edges may not arise directly from mergers (e.g., A496, Dupke & White, 2003), this paper focuses on those which arise as contact discontinuities between a merging subcluster and the ambient cluster gas. We argue that the flow of gas past the merging subcluster induces slow motions inside the cloud. These motions transport gas from the central parts of the subcluster towards the interface. Since in a typical cluster or group (even an isothermal one) the entropy of the gas in the central regions is significantly lower than in the outer regions, the transport of the low entropy gas towards the interface and the associated adiabatic expansion makes the gas temperature immediately inside the interface lower than in any other place in the system, thus enhancing the temperature jump across the interface and making the ``tip of the contact discontinuity cool. We illustrate this picture with the XMM-Newton gas temperature map of the A3667 cluster.
Cold fronts have been observed in a large number of galaxy clusters. Understanding their nature and origin is of primary importance for the investigation of the internal dynamics of clusters. To gain insight on the nature of these features, we carry out a statistical investigation of their occurrence in a sample of galaxy clusters observed with XMM-Newton and we correlate their presence with different cluster properties. We have selected a sample of 45 clusters starting from the B55 flux limited sample by Edge et al. (1990) and performed a systematic search of cold fronts. We find that a large fraction of clusters host at least one cold front. Cold fronts are easily detected in all systems that are manifestly undergoing a merger event in the plane of the sky while the presence of such features in the remaining clusters is related to the presence of a steep entropy gradient, in agreement with theoretical expectations. Assuming that cold fronts in cool core clusters are triggered by minor merger events, we estimate a minimum of 1/3 merging events per halo per Gyr.
225 - J. A. ZuHone 2014
Cold fronts -- contact discontinuities in the intracluster medium (ICM) of galaxy clusters -- should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This ope ns the possibility to place constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced by a factor f ~ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The RMS velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g. viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significant affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.
Cold fronts have been detected both in merging and in cool core clusters, where little or no sign of a merging event is present. A systematic search of sharp surface brightness discontinuities performed on a sample of 62 galaxy clusters observed with XMM-Newton shows that cold fronts are a common feature in galaxy clusters. Indeed most (if not all) of the nearby clusters (z < 0.04) host a cold front. Understanding the origin and the nature of a such frequent phenomenon is clearly important. To gain insight on the nature of cold fronts in cool core clusters we have undertaken a systematic study of all contact discontinuities detected in our sample, measuring surface brightness, temperature and when possible abundance profiles across the fronts. We measure the Mach numbers for the cold fronts finding values which range from 0.2 to 0.9; we also detect a discontinuities in the metal profile of some clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا