ترغب بنشر مسار تعليمي؟ اضغط هنا

The prompt X-ray emission of GRB011211: possible evidence of a transient absorption feature

56   0   0.0 ( 0 )
 نشر من قبل Mauro Orlandini
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Frontera




اسأل ChatGPT حول البحث

We report on observation results of the prompt X- and gamma-ray emission from GRB011211. This event was detected with the Gamma-Ray Burst Monitor and one of the Wide Field Cameras aboard the BeppoSAX satellite. The optical counterpart to the GRB was soon identified and its redshift determined (z = 2.140), while with the XMM-Newton satellite, the X-ray afterglow emission was detected. Evidence of soft X-ray emission lines was reported by Reeves et al. (2002), but not confirmed by other authors. In investigating the spectral evolution of the prompt emission we find the possible evidence of a transient absorption feature at 6.9^{+0.6}_{-0.5} keV during the rise of the primary event. The significance of the feature is derived with non parametric tests and numerical simulations, finding a chance probability which ranges from 3x10^{-3} down to 4x10^{-4}. The feature shows a Gaussian profile and an equivalent width of 1.2^{+0.5}_{-0.6} keV. We discuss our results and their possible interpretation.

قيم البحث

اقرأ أيضاً

We present an X-ray spectral and timing analysis of two $NuSTAR$ observations of the transient Be X-ray binary SAX J2103.5+4545 during its April 2016 outburst, which was characterized by the highest flux since $NuSTAR$s launch. These observations pro vide detailed hard X-ray spectra of this source during its bright precursor flare and subsequent fainter regular outburst for the first time. In this work, we model the phase-averaged spectra for these observations with a negative and positive power law with an exponential cut-off (NPEX) model and compare the pulse profiles at different flux states. We found that the broad-band pulse profile changes from a three peaked pulse in the first observation to a two peaked pulse in the second observation, and that each of the pulse peaks has some energy dependence. We also perform pulse-phase spectroscopy and fit phase-resolved spectra with NPEX to evaluate how spectral parameters change with pulse phase. We find that while the continuum parameters are mostly constant with pulse phase, a weak absorption feature at ~12 keV that might, with further study, be classified as a cyclotron line, does show strong pulse phase dependence.
57 - D. Lazzati 2001
The absorption feature detected in the prompt X-ray emission of GRB 990705 bears important consequences. We investigate different production mechanisms and we conclude that the absorbing material cannot be very close to the burster and is likely to b e moderately clumped. These properties challenge any model in which the burst explodes in coincidence with the core-collapse of a massive rotating star. We show that the straightforward interpretation of the absorption feature as a photoionization K edge of neutral iron faces a severe problem in that it requires a huge amount of iron in the close vicinity of the burster. We then discuss an alternative scenario, in which iron ions are kept in a high ionization state by the burst flux, and the absorption feature is produced by resonant scattering from hydrogen-like iron, broadened by a range outflow velocities. In this case the physical conditions and geometry of the absorbing material are fully consistent with the presence of a young supernova remnant surrounding the burst site at a radius R ~ 10^{16} cm. We finally discuss how this remnant might affect the generation of afterglows with a standard power-law flux decay.
163 - A.Yoshida 2001
A gamma-ray burst of 28 August 1997 was localized by the All-Sky Monitor on the Rossi XTE satellite and its coordinates were promptly disseminated. An ASCA followup started 1.17 days after the burst as a Target of Opportunity Observation and detected an X-ray afterglow. The spectral data displayed a hump around ~5 keV and an absorption column of 7.1 x 10^21 cm^{-2}. This hump structure is likely a recombination edge of iron in the vicinity of the source, taking account of the redshift z = 0.9578 found for the likely host galaxy of the associated radio flare. Radiative Recombination edge and Continuum model can interpret the spectrum from highly ionized plasma in a non equilibrium ionization state. The absorption could be also due to the medium presumably in the vicinity of the GRB.
We have observed the prompt emission of GRB100418A, from its beginning by the MAXI/SSC (0.7-7 keV) on board the International Space Station followed by the Swift/XRT (0.3-10 keV) observation. The light curve can be fitted by a combination of a power law component and an exponential component (decay constant is $31.6pm 1.6$ sec). The X-ray spectrum is well expressed by the Band function with $E_{rm p}leq$8.3 keV. This is the brightest GRB showing a very low value of $E_{rm p}$. It satisfies the Yonetoku-relation ($E_{rm p}$-$L_{rm p}$). It is also consistent with the Amati relation ($E_{rm p}$-$E_{rm iso}$) in 2.5$sigma$ level.
We report on the energy-resolved timing and phase-resolved spectral analysis of X-ray emission from PSR J0659+1414 observed with XMM-Newton and NuSTAR. We find that the new data rule out the previously suggested model of the phase-dependent spectrum as a three-component (2 blackbodies + power-law) continuum, which shows large residuals between $0.3-0.7$ keV. Fitting neutron star atmosphere models or several blackbodies to the spectrum does not provide a better description of the spectrum, and requires spectral model components with unrealistically large emission region sizes. The fits improve significantly if we add a phase-dependent absorption feature with central energy $0.5-0.6$ keV and equivalent width up to $approx 50$ eV. We detected the feature for about half of the pulse cycle. Energy-resolved pulse profiles support the description of the spectrum with a three-component continuum and an absorption component. The absorption feature could be interpreted as an electron cyclotron line originating in the pulsar magnetosphere and broadened by the non-uniformity of the magnetic field along the line of sight. The significant phase-variability in the thermal emission from the entire stellar surface may indicate multi-polar magnetic fields and a non-uniform temperature distribution. The strongly pulsed non-thermal spectral component detected with NuSTAR in the $3-20$ keV range is well fit by a power-law model with a photon index $Gamma=1.5pm0.2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا