ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible phase-dependent absorption feature in the x-ray spectrum of the middle-aged PSR J0659+1414

64   0   0.0 ( 0 )
 نشر من قبل Prakash Arumugasamy
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the energy-resolved timing and phase-resolved spectral analysis of X-ray emission from PSR J0659+1414 observed with XMM-Newton and NuSTAR. We find that the new data rule out the previously suggested model of the phase-dependent spectrum as a three-component (2 blackbodies + power-law) continuum, which shows large residuals between $0.3-0.7$ keV. Fitting neutron star atmosphere models or several blackbodies to the spectrum does not provide a better description of the spectrum, and requires spectral model components with unrealistically large emission region sizes. The fits improve significantly if we add a phase-dependent absorption feature with central energy $0.5-0.6$ keV and equivalent width up to $approx 50$ eV. We detected the feature for about half of the pulse cycle. Energy-resolved pulse profiles support the description of the spectrum with a three-component continuum and an absorption component. The absorption feature could be interpreted as an electron cyclotron line originating in the pulsar magnetosphere and broadened by the non-uniformity of the magnetic field along the line of sight. The significant phase-variability in the thermal emission from the entire stellar surface may indicate multi-polar magnetic fields and a non-uniform temperature distribution. The strongly pulsed non-thermal spectral component detected with NuSTAR in the $3-20$ keV range is well fit by a power-law model with a photon index $Gamma=1.5pm0.2$.



قيم البحث

اقرأ أيضاً

We present an X-ray spectral and timing analysis of two $NuSTAR$ observations of the transient Be X-ray binary SAX J2103.5+4545 during its April 2016 outburst, which was characterized by the highest flux since $NuSTAR$s launch. These observations pro vide detailed hard X-ray spectra of this source during its bright precursor flare and subsequent fainter regular outburst for the first time. In this work, we model the phase-averaged spectra for these observations with a negative and positive power law with an exponential cut-off (NPEX) model and compare the pulse profiles at different flux states. We found that the broad-band pulse profile changes from a three peaked pulse in the first observation to a two peaked pulse in the second observation, and that each of the pulse peaks has some energy dependence. We also perform pulse-phase spectroscopy and fit phase-resolved spectra with NPEX to evaluate how spectral parameters change with pulse phase. We find that while the continuum parameters are mostly constant with pulse phase, a weak absorption feature at ~12 keV that might, with further study, be classified as a cyclotron line, does show strong pulse phase dependence.
Electrons/positrons produced in a pulsar magnetosphere emit synchrotron radiation, which is widely believed as the origin of the non-thermal X-ray emission detected from pulsars. Particles are produced by curvature photons emitted from accelerated pa rticles in the magnetosphere. These curvature photons are detected as pulsed $gamma$-ray emissions from pulsars with age $lesssim10^6$ yr. Using $gamma$-ray observations and analytical model, we impose severe constraints on the synchrotron radiation as a mechanism of the non-thermal X-ray emission. In most middle-aged pulsars ($sim10^5-10^6$ yr) which photon-photon pair production is less efficient in their magnetosphere, we find that the synchrotron radiation model is difficult to explain the observed non-thermal X-ray emission.
75 - R. P. Mignani 2016
We carried out deep optical observations of the middle-aged $gamma$-ray pulsar PSR J1741-2054 with the Very Large Telescope (VLT). We identified two objects, of magnitudes $m_v=23.10pm0.05$ and $m_v=25.32pm0.08$, at positions consistent with the very accurate Chandra coordinates of the pulsar, the faintest of which is more likely to be its counterpart. From the VLT images we also detected the known bow-shock nebula around PSR J1741-2054. The nebula is displaced by $sim 0farcs9$ (at the $3sigma$ confidence level) with respect to its position measured in archival data, showing that the shock propagates in the interstellar medium consistently with the pulsar proper motion. Finally, we could not find evidence of large-scale extended optical emission associated with the pulsar wind nebula detected by Chandra, down to a surface brightness limit of $sim 28.1$ magnitudes arcsec$^{-2}$. Future observations are needed to confirm the optical identification of PSR J1741-2054 and characterise the spectrum of its counterpart.
The Large Area Telescope (LAT) onboard the Fermi satellite opened a new era for pulsar astronomy, detecting gamma-ray pulsations from more than 60 pulsars, ~40% of which are not seen at radio wavelengths. One of the most interesting sources discovere d by LAT is PSR J0357+3205, a radio-quiet, middle-aged (tau_C ~0.5 Myr) pulsar standing out for its very low spin-down luminosity (Erot ~6x10^33 erg/s), indeed the lowest among non-recycled gamma-ray pulsars. A deep X-ray observation with Chandra (0.5-10 keV), coupled with sensitive optical/infrared ground-based images of the field, allowed us to identify PSR J0357+3205 as a faint source with a soft spectrum, consistent with a purely non-thermal emission (photon index Gamma=2.53+/-0.25). The absorbing column (NH=8+/-4x10^20 cm^-2) is consistent with a distance of a few hundred parsecs. Moreover, the Chandra data unveiled a huge (9 arcmin long) extended feature apparently protruding from the pulsar. Its non-thermal X-ray spectrum points to synchrotron emission from energetic particles from the pulsar wind, possibly similar to other elongated X-ray tails associated with rotation-powered pulsars and explained as bow-shock pulsar wind nebulae (PWNe). However, energetic arguments, as well as the peculiar morphology of the diffuse feature associated with PSR J0357+3205 make the bow-shock PWN interpretation rather challenging.
We present analytical and numerical studies of models of supernova-remnant (SNR) blast waves expanding into uniform media and interacting with a denser cavity wall, in one spatial dimension. We predict the nonthermal emission from such blast waves: s ynchrotron emission at radio and X-ray energies, and bremsstrahlung, inverse-Compton emission (from cosmic-microwave-background seed photons, ICCMB), and emission from the decay of $pi^0$ mesons produced in inelastic collisions between accelerated ions and thermal gas, at GeV and TeV energies. Accelerated particle spectra are assumed to be power-laws with exponential cutoffs at energies limited by the remnant age or (for electrons, if lower) by radiative losses. We compare the results with those from homogeneous (one-zone) models. Such models give fair representations of the 1-D results for uniform media, but cavity-wall interactions produce effects for which one-zone models are inadequate. We study the time evolution of SNR morphology and emission with time. Strong morphological differences exist between ICCMB and $pi^0$-decay emission, at some stages, the TeV emission can be dominated by the former and the GeV by the latter, resulting in strong energy-dependence of morphology. Integrated gamma-ray spectra show apparent power-laws of slopes that vary with time, but do not indicate the energy distribution of a single population of particles. As observational capabilities at GeV and TeV energies improve, spatial inhomogeneity in SNRs will need to be accounted for.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا