ﻻ يوجد ملخص باللغة العربية
We present combined BIMA interferometer and IRAM 30 m Telescope data of N2H+ 1-0 line emission across the nearby dense, star forming core Ophiuchus A (Oph A) at high linear resolution (e.g., ~1000 AU). Six maxima of integrated line intensity are detected which we designate Oph A-N1 through N6. The N4 and N5 maxima are coincident with the starless continuum objects SM1 and SM2 respectively but the other maxima are not coincident with previously-identified objects. In contrast, relatively little N2H+ 1-0 emission is coincident with the starless object SM2 and the Class 0 protostar VLA 1623. The FWHM of the N2H+ 1-0 line, Delta V, varies by a factor of ~5 across Oph A. Values of Delta V < 0.3 km/s are found in 14 locations in Oph A, but only that associated with N6 is both well-defined spatially and larger than the beam size. Centroid velocities of the line, V_LSR, vary relatively little, having an rms of only ~0.17 km/s. Small-scale V_LSR gradients of <0.5 km/s over ~0.01 pc are found near SM1, SM1N, and SM2, but not N6. The low N2H+ abundances of SM2 or VLA 1623 relative to SM1, SM1N, or N6 may reflect relatively greater amounts of N2 adsorption onto dust grains in their colder and probably denser interiors. The low Delta V of N6, i.e., 0.193 km/s FWHM, is only marginally larger than the FWHM expected from thermal motions alone, suggesting turbulent motions in the Oph A core have been reduced dramatically at this location. The non-detection of N6 in previous thermal continuum maps suggests that interesting sites possibly related to star formation may be overlooked in such data.
The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in
The recently discovered protostellar jet known as HH212 is beautifully symmetric, with a series of paired shock knots and bow shocks on either side of the exciting source region, IRAS 05413-0104 (Zinnecker et al. 1998). We present VLA ammonia maps of
We present the analysis of a Suzaku observation of the Ophiuchus galaxy cluster. We confirmed that the cluster has a cool core. While the temperature of the intracluster medium (ICM) decreases toward the center, the metal abundance increases. Except
The JCMT Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering propertie
(Abridged) We performed a deep infrared imaging survey of 63 embedded young stellar objects (YSOs) located in the Taurus and Ophiuchus clouds to search for companions. The sample includes Class I and flat infrared spectrum protostellar objects. We fi