ﻻ يوجد ملخص باللغة العربية
We have detected an ionized nebula around the hot DO white dwarf KPD 0005+5106, and used the [OIII]/H-alpha ratios and nebular velocities to separate this nebula from the background HII region of AO Cas. The angular size of the [OIII] nebula of KPD 0005+5106 is ~3 deg. The velocity of this nebula is similar to those of the local interstellar HI gas and the interstellar/circumstellar absorption lines in UV spectra of KPD 0005+5106, but has a large offset from those of the stellar photospheric lines. The mass of the ionized nebula, ~70 Msun, indicates that it consists of interstellar material and that the velocity offset between the star and the ambient medium should not be interpreted as a wind outflow. We have also analyzed the ROSAT PSPC observation of KPD 0005+5106 to determine its hard X-ray luminosity. Using the L_X/L_bol relation for late-type stars and the lack of obvious near-IR excess of KPD 0005+5106, we exclude the possible existence of a binary companion with coronal activity. Without a wind outflow, the presence of stellar OVIII emission requires that X-rays at energies greater than 0.871 keV are present in the vicinity of KPD 0005+5106. This hard X-ray emission is most puzzling as neither photospheric emission at such high energies nor a high-temperature corona is expected from current stellar atmospheric models of KPD 0005+5106. X-ray observations with high angular resolution and sensitivity are needed to confirm the positional coincidence and to enable X-ray spectral analyses for constraining the physical origin of the hard X-ray emission from KPD 0005+5106.
KPD0005+5106 is the hottest known helium-rich white dwarf. We have identified NeVIII lines in UV and optical spectra and conclude that it is significantly hotter than previously thought, namely Teff=200,000 K instead of 120,000 K. This is a possible
The photospheric emission of a white dwarf (WD) is not expected to be detectable in hard X-rays or the mid-IR. Hard X-ray (~1 keV) emission associated with a WD is usually attributed to a binary companion; however, emission at 1 keV has been detected
For the first time, we have identified photospheric emission lines in the far-UV spectrum of a white dwarf. They were discovered in the Far Ultraviolet Spectroscopic Explorer spectrum of the hot (Teff~200,000 K) DO white dwarf KPD0005+5106 and they s
The fast rotating magnetized white dwarf, AE Aquarii, was observed with Suzaku, in October 2005 and October 2006 with exposures of 53.1 and 42.4 ks, respectively. In addition to clear spin modulation in the 0.5--10 keV band of the XIS data at the bar
The radio galaxy Cen A has been detected all the way up to the TeV energy range. This raises the question about the dominant emission mechanisms in the high-energy domain. Spectral analysis allows us to put constraints on the possible emission proces