ﻻ يوجد ملخص باللغة العربية
KPD0005+5106 is the hottest known helium-rich white dwarf. We have identified NeVIII lines in UV and optical spectra and conclude that it is significantly hotter than previously thought, namely Teff=200,000 K instead of 120,000 K. This is a possible explanation for the observed hard X-ray emission as being of photospheric origin. Concerning its evolutionary state, we suggest that KPD0005+5106 is not a descendant of a PG1159 star but more probably related to the O(He) stars and RCrB stars.
For the first time, we have identified photospheric emission lines in the far-UV spectrum of a white dwarf. They were discovered in the Far Ultraviolet Spectroscopic Explorer spectrum of the hot (Teff~200,000 K) DO white dwarf KPD0005+5106 and they s
We have detected an ionized nebula around the hot DO white dwarf KPD 0005+5106, and used the [OIII]/H-alpha ratios and nebular velocities to separate this nebula from the background HII region of AO Cas. The angular size of the [OIII] nebula of KPD 0
The strong mass loss of Luminous Blue Variables (LBVs) is thought to play a critical role in massive-star evolution, but their place in the evolutionary sequence remains debated. A key to understanding their peculiar instability is their high observe
For 32 central stars of PNe we present their parameters interpolated among the new evolutionary sequences. The derived stellar final masses are confined between 0.53 and 0.58 $M_odot$ in good agreement with the peak in the white dwarf mass distributi
Amyloid precursor with 770 amino acids dimerizes and aggregates, as do its c terminal 99 amino acids and amyloid 40,42 amino acids fragments. The titled question has been discussed extensively, and here it is addressed further using thermodynamic sca