ترغب بنشر مسار تعليمي؟ اضغط هنا

Planets opening dust gaps in gas disks

115   0   0.0 ( 0 )
 نشر من قبل Sijme-Jan Paardekooper
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the interaction of gas and dust in a protoplanetary disk in the presence of a massive planet using a new two-fluid hydrodynamics code. In view of future observations of planet-forming disks we focus on the condition for gap formation in the dust fluid. While only planets more massive than 1 Jupiter mass (MJ) open up a gap in the gas disk, we find that a planet of 0.1 MJ already creates a gap in the dust disk. This makes it easier to find lower-mass planets orbiting in their protoplanetary disk if there is a significant population of mm-sized particles.



قيم البحث

اقرأ أيضاً

The tidal perturbation of embedded protoplanets on their natal disks has been widely attributed to be the cause of gap-ring structures in sub-mm images of protoplanetary disks around T Tauri stars. Numerical simulations of this process have been used to propose scalings of characteristic dust gap width/gap-ring distance with respect to planet mass. Applying such scalings to analyze observed gap samples yields a continuous mass distribution for a rich population of hypothetical planets in the range of several Earth to Jupiter masses. In contrast, the conventional core-accretion scenario of planet formation predicts a bi-modal mass function due to 1) the onset of runaway gas accretion above sim20 Earth masses and 2) suppression of accretion induced by gap opening. Here we examine the dust disk response to the tidal perturbation of eccentric planets as a possible resolution of this paradox. Based on simulated gas and dust distributions, we show the gap-ring separation of Neptune-mass planets with small eccentricities might become comparable to that induced by Saturn-mass planets on circular orbits. This degeneracy may obliterate the discrepancy between the theoretical bi-modal mass distribution and the observed continuous gap width distribution. Despite damping due to planet-disk interaction, modest eccentricity may be sustained either in the outer regions of relatively thick disks or through resonant excitation among multiple super Earths. Moreover, the ring-like dust distribution induced by planets with small eccentricities is axisymmetric even in low viscosity environments, consistent with the paucity of vortices in ALMA images.
High resolution ALMA observations of protoplanetary disks have revealed that many, if not all primordial disks consist of ring-like dust structures. The origin of these dust rings remains unclear, but a common explanation is the presence of planetary companions that have cleared gaps along their orbit and trapped the dust at the gap edge. A signature of this scenario is a decrease of gas density inside these gaps. In recent work, Isella et al. 2016 derived drops in gas density consistent with Saturn-mass planets inside the gaps in the HD163296 disk through spatially resolved CO isotopologue observations. However, as CO abundance and temperature depends on a large range of factors, the interpretation of CO emission is non-trivial. We use the physical-chemical code DALI to show that the gas temperature increases inside dust density gaps, implying that any gaps in the gas, if present, would have to be much deeper, consistent with planet masses higher than a Jupiter mass. Furthermore, we show that a model with increased grain growth at certain radii, as expected at a snowline, can reproduce the dust rings in HD163296 equally well without the need for companions. This scenario can explain both younger and older disks with observed gaps, as gaps have been seen in systems as young <1 Myr. While the origin of the rings in HD163296 remains unclear, these modeling results demonstrate that care has to be taken when interpreting CO emission in protoplanetary disk observations.
Recent ALMA observations revealed concentric annular structures in several young class-II objects. In an attempt to produce the rings and gaps in some of these systems, they have been modeled numerically with a single embedded planet assuming a local ly isothermal equation of state. This is often justified by observations targeting the irradiation-dominated outer regions of disks (approximately 100 au). We test this assumption by conducting hydrodynamics simulations of embedded planets in thin locally isothermal and radiative disks that mimic the systems HD 163296 and AS 209 in order to examine the effect of including the energy equation in a seemingly locally isothermal environment as far as planet-disk interaction is concerned. We find that modeling such disks with an ideal equation of state makes a difference in terms of the number of produced rings and the spiral arm contrast in the disk. Locally isothermal disks produce sharper annular or azimuthal features and overestimate a single planets gap-opening capabilities by producing multiple gaps. In contrast, planets in radiative disks carve a single gap for typical disk parameters. Consequently, for accurate modeling of planets with semimajor axes up to about 100 au, radiative effects should be taken into account even in seemingly locally isothermal disks. In addition, for the case of AS 209, we find that the primary gap is significantly different between locally isothermal and radiative models. Our results suggest that multiple planets are required to explain the ring-rich structures in such systems.
We examine the gas circulation near a gap opened by a giant planet in a protoplanetary disk. We show with high resolution 3D simulations that the gas flows into the gap at high altitude over the mid-plane, at a rate dependent on viscosity. We explain this observation with a simple conceptual model. From this model we derive an estimate of the amount of gas flowing into a gap opened by a planet with Hill radius comparable to the scale-height of a layered disk (i. e. a disk with viscous upper layer and inviscid midplane). Our estimate agrees with modern MRI simulations(Gressel et al., 2013). We conclude that gap opening in a layered disk can not slow down significantly the runaway gas accretion of Saturn to Jupiter-mass planets.
375 - Ruobing Dong , Sheng-yuan Liu , 2018
Protoplanets can produce structures in protoplanetary disks via gravitational disk-planet interactions. Once detected, such structures serve as signposts of planet formation. Here we investigate the kinematic signatures in disks produced by multi-Jup iter mass ($M_{rm J}$) planets using 3D hydrodynamics and radiative transfer simulations. Such a planet opens a deep gap, and drives transonic vertical motions inside. Such motions include both a bulk motion of the entire half-disk column, and turbulence on scales comparable to and smaller than the scale height. They significantly broaden molecular lines from the gap, producing double-peaked line profiles at certain locations, and a kinematic velocity dispersion comparable to thermal after azimuthal averaging. The same planet does not drive fast vertical motions outside the gap, except at the inner spiral arms and the disk surface. Searching for line broadening induced by multi-$M_{rm J}$ planets inside gaps requires an angular resolution comparable to the gap width, an assessment of the gap gas temperature to within a factor of 2, and a high sensitivity needed to detect line emission from the gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا