ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Coronal Emission Lines in Active Galactic Nuclei

63   0   0.0 ( 0 )
 نشر من قبل Alberto Rodriguez-Ardila
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

VLT and NTT spectra are used to examine the nuclear and extended coronal line emission in a sample of well-known Seyfert 1 and 2 galaxies. The excellent spatial resolution obtained with VLT allowed us to map [SiVI] 1.963 $mu$m and [SiVII] 2.48 $mu$m on scales of up to 20 pc. Coronal line emission, extended to distances of $sim$100 pc, is detected in some of the lines analyzed, particularly in [FeX] 6374AA, [FeXI] 7891AA, and [SiVII] 2.48$mu$m. Most coronal lines are strongly asymmetric towards the blue and broader than low-ionization lines. This result is particularly important for Circinus, where previous observations had failed at detecting larger widths for high-ionization lines. Photoionization models are used to investigate the physical conditions and continuum luminosities necessary to produced the observed coronal emission. We found that an ionization parameter U> 0.10 is necessary to reproduce the observations, although the clouds should be located at distances < 30 pc.



قيم البحث

اقرأ أيضاً

We present a new sample of 116 double-peaked Balmer line Active Galactic Nuclei (AGN) selected from the Sloan Digital Sky Survey. Double-peaked emission lines are believed to originate in the accretion disks of AGN, a few hundred gravitational radii (Rg) from the supermassive black hole. We investigate the properties of the candidate disk emitters with respect to the full sample of AGN over the same redshifts, focusing on optical, radio and X-ray flux, broad line shapes and narrow line equivalent widths and line flux-ratios. We find that the disk-emitters have medium luminosities (~10^44erg/s) and FWHM on average six times broader than the AGN in the parent sample. The double-peaked AGN are 1.6 times more likely to be radio-sources and are predominantly (76%) radio quiet, with about 12% of the objects classified as LINERs. Statistical comparison of the observed double-peaked line profiles with those produced by axisymmetric and non-axisymmetric accretion disk models allows us to impose constraints on accretion disk parameters. The observed Halpha line profiles are consistent with accretion disks with inclinations smaller than 50 deg, surface emissivity slopes of 1.0-2.5, outer radii larger than ~2000 Rg, inner radii between 200-800Rg, and local turbulent broadening of 780-1800 km/s. The comparison suggests that 60% of accretion disks require some form of asymmetry (e.g., elliptical disks, warps, spiral shocks or hot spots).
We analyze X-ray spectra of heavily obscured (N_H > 10^{24} cm^{-2}) active galaxies obtained with Chandra, concentrating on the iron K alpha fluorescence line. We measure very large equivalent widths in most cases, up to 5 keV in the most extreme ex ample. The geometry of an obscuring torus of material near the active galactic nucleus (AGN) determines the Fe emission, which we model as a function of torus opening angle, viewing angle, and optical depth. The starburst/AGN composite galaxies in this sample require small opening angles. Starburst/AGN composite galaxies in general therefore present few direct lines of sight to their central engines. These composite galaxies are common, and their large covering fractions and heavy obscuration effectively hide their intrinsically bright X-ray continua. While few distant obscured AGNs have been identified, we propose to exploit their signature large Fe K alpha equivalent widths to find more examples in X-ray surveys.
The STOKES Monte Carlo radiative transfer code has been extended to model the velocity dependence of the polarization of emission lines. We use STOKES to present improved modelling of the velocity-dependent polarization of broad emission lines in act ive galactic nuclei. We confirm that off-axis continuum emission can produce observed velocity dependencies of both the degree and position angle of polarization. The characteristic features are a dip in the percentage polarization and an S-shaped swing in the position angle of the polarization across the line profile. Some differences between our STOKES results and previous modelling of polarization due to off-axis emission are noted. In particular we find that the presence of an offset between the maximum in line flux and the dip in the percentage of polarization or the central velocity of the swing in position angle does not necessarily imply that the scattering material is moving radially. Our model is an alternative scenario to the equatorial scattering disk described by Smith et al. (2005). We discuss strategies to discriminate between both interpretations and to constrain their relative contributions to the observed velocity-resolved line and polarization.
157 - Xiao-Bo Dong 2010
From detailed spectral analysis of a large sample of low-redshift active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey, we demonstrate---statistically for the first time---that narrow optical Fe II emission lines, both permitted a nd forbidden, are prevalent in type 1 AGNs. Remarkably, these optical lines are completely absent in type 2 AGNs, across a wide luminosity range, from Seyfert 2 galaxies to type 2 quasars. We suggest that the narrow FeII-emitting gas is confined to a disk-like geometry in the innermost regions of the narrow-line region on physical scales smaller than the obscuring torus.
573 - Shi-Yan Zhang 2008
Type II AGNs with polarimetric broad emission line provided strong evidence for the orientation-based unified model for AGNs. We want to investigate whether the polarimetric broad emission line in type II AGNs can be used to calculate their central s upermassive black hole (SMBH) masses, like that for type I AGNs. We collected 12 type II AGNs with polarimetric broad emission line width from the literatures, and calculated their central black hole masses from the polarimetric broad line width and the isotropic oiii luminosity. We also calculate the mass from stellar velocity dispersion, $sigma_*$, with the $mbh-sigma_*$ relation.We find that: (1) the black hole masses derived from the polarimetric broad line width is averagely larger than that from the $mbh- sigma_*$ relation by about 0.6 dex, (2) If these type II AGNs follow $mbh-sigma_*$ relation, we find that the random velocity cant not be omitted and is comparable with the BLRs Keplerian velocity. It is consistent with the scenery of large outflow from the accretion disk suggested by Yong et al.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا