ﻻ يوجد ملخص باللغة العربية
Complex organic molecules (COMs) have been observed towards several low-mass young stellar objects (LYSOs). Small and heterogeneous samples have so far precluded conclusions on typical COM abundances, as well as the origin(s) of abundance variations between sources. We present observations towards 16 deeply embedded (Class 0/I) low-mass protostars using the IRAM 30m telescope. We detect CH$_2$CO, CH$_3$CHO, CH$_3$OCH$_3$, CH$_3$OCHO, CH$_3$CN, HNCO, and HC$_3$N towards 67%, 37%, 13%, 13%, 44%, 81%, and 75% of sources respectively. Median column densities derived using survival analysis range between 6.0x10$^{10}$ cm$^{-2}$ (CH$_3$CN) and 2.4x10$^{12}$ cm$^{-2}$ (CH$_3$OCH$_3$) and median abundances range between 0.48% (CH$_3$CN) and 16% (HNCO) with respect to CH$_3$OH. Column densities for each molecule vary by about one order of magnitude across the sample. Abundances with respect to CH$_3$OH are more narrowly distributed, especially for oxygen-bearing species. We compare observed median abundances with a chemical model for low-mass protostars and find fair agreement, although some modeling work remains to bring abundances higher with respect to CH$_3$OH. Median abundances with respect to CH$_3$OH in LYSOs are also found to be generally comparable to observed abundances in hot cores, hot corinos, and massive young stellar objects. Compared with comets, our sample is comparable for all molecules except HC$_3$N and CH$_2$CO, which likely become depleted at later evolutionary stages.
The chemical inventory of planets is determined by the physical and chemical processes that govern the early phases of star formation. The aim is to investigate N-bearing complex organic molecules towards two Class 0 protostars (B1-c and S68N) at mil
To date, about two dozen low-mass embedded protostars exhibit rich spectra with lines of complex organic molecule (COM). These protostars seem to possess different enrichment in COMs. However, the statistics of COM abundance in low-mass protostars ar
Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eup=4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is
(Abridged*) Models of the young solar nebula assume a hot initial disk with most volatiles are in the gas phase. The question remains whether an actively accreting disk is warm enough to have gas-phase water up to 50 AU radius. No detailed studies ha
(Abridged) Protoplanetary disks are vital objects in star and planet formation, possessing all the material which may form a planetary system orbiting the new star. We investigate the synthesis of complex organic molecules (COMs) in disks to constrai