ترغب بنشر مسار تعليمي؟ اضغط هنا

Velocity profiles of [CII], [CI], CO, and [OI] and physical conditions in four star-forming regions in the Large Magellanic Cloud

139   0   0.0 ( 0 )
 نشر من قبل Yoko Okada
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of our study is to investigate the physical properties of the star-forming interstellar medium (ISM) in the Large Magellanic Cloud (LMC) by separating the origin of the emission lines spatially and spectrally. Following Okada et al. (2015, Paper I), we investigate different phases of the ISM traced by carbon-bearing species in four star-forming regions in the LMC, and model the physical properties using the KOSMA-tau PDR model. We mapped 3--13 arcmin$^2$ areas in 30 Dor, N158, N160 and N159 along the molecular ridge of the LMC in [CII]158um with GREAT on board SOFIA, and in CO(2-1) to (6-5), $^{13}$CO(2-1) and (3-2), [CI]3P1-3P0 and 3P2-3P1 with APEX. In all four star-forming regions, the line profiles of CO, $^{13}$CO, and [CI] emission are similar, whereas [CII] typically shows wider line profiles or an additional velocity component. For selected positions in N159 and 30 Dor, we observed the velocity-resolved [OI] 145um and 63um lines for the first time with upGREAT. At some positions, the [OI] line profiles match those of CO, at other positions they are more similar to the [CII] profiles. We interpret the different line profiles of CO, [CII] and [OI] as contributions from spatially separated clouds and/or clouds in different physical phases, which give different line ratios depending on their physical properties. We model the emission from the CO, [CI], [CII], and [OI] lines and the far-infrared continuum emission using the latest KOSMA-tau PDR model, which treats the dust-related physics consistently and computes the dust continuum SED together with the line emission of the chemical species. We find that the line and continuum emissions are not well-reproduced by a single clump ensemble. Toward the CO peak at N159~W, we propose a scenario that the CO, [CII], and [OI] 63um emission are weaker than expected because of mutual shielding among clumps. (abridged for arXiv)

قيم البحث

اقرأ أيضاً

204 - Yoko Okada 2015
The [CII]158um line is one of the dominant cooling lines in star-forming active regions. The commonly assumed clumpy UV-penetrated cloud models predict a [CII] line profile similar to that of CO. However, recent spectral-resolved observations show th at they are often very different, indicating a more complex origin of the line emission including the dynamics of the source region. The aim of our study is to investigate the physical properties of the star-forming ISM in the Large Magellanic Cloud (LMC) by separating the origin of the emission lines spatially and spectrally. In this paper, we focus on the spectral characteristics and the origin of the emission lines, and the phases of carbon-bearing species in the N159 star-forming region in the LMC. We mapped a 4x(3-4) region in N159 in [CII]158um and [NII]205um with the GREAT on board SOFIA, and in CO(3-2), (4-3), (6-5), 13CO(3-2), and [CI]3P1-3P0 and 3P2-3P1 with APEX. The emission of all transitions observed shows a large variation in the line profiles across the map and between the different species. At most positions the [CII] emission line profile is substantially wider than that of CO and [CI]. We estimated the fraction of the [CII] integrated line emission that cannot be fitted by the CO line profile to be 20%-50%. We derived the relative contribution from C+, C, and CO to the column density in each velocity bin. The contribution from C+ dominates the velocity range far from the velocities traced by the dense molecular gas, and the region located between the CO cores of N159 W and E. We estimate the contribution of the ionized gas to the [CII] emission using the ratio to the [NII] emission to be < 19% to the [CII] emission at its peak position, and <15% over the whole observed region. Using the integrated line intensities, we present the spatial distribution of I([CII])/I(FIR). (abridged for arXiv)
64 - C. Kramer 2003
We have used the KOSMA 3m telescope to map the core 7x5 of the Galactic massive star forming region W3Main in the two fine structure lines of atomic carbon and four mid-J transitions of CO and 13CO. In combination with a map of singly ionized carbon (Howe et al. 1991), and FIR fine structure line data observed by ISO/LWS at the center position, these data sets allow to study in detail the physical structure of the photon dominated cloud interface regions (PDRs) where the occurance of carbon changes from CII to CI, and to CO.
We used resolved star counts from Hubble Space Telescope images to determine the center of gravity and the projected density profiles of 6 old globular clusters in the Large Magellanic Cloud (LMC), namely NGC 1466, NGC 1841, NGC 1898, NGC 2210, NGC 2 257 and Hodge 11. For each system, the LMC field contribution was properly taken into account by making use, when needed, of parallel HST observations. The derived values of the center of gravity may differ by several arcseconds (corresponding to more than 1 pc at the distance of the LMC) from previous determinations. The cluster density profiles are all well fit by King models, with structural parameters that may differ from the literature ones by even factors of two. Similarly to what observed for Galactic globular clusters, the ratio between the effective and the core radii has been found to anti-correlate with the cluster dynamical age.
68 - T. Wong , A. Hughes (3 2009
We analyze the conditions for detection of CO(1-0) emission in the Large Magellanic Cloud (LMC), using the recently completed second NANTEN CO survey. In particular, we investigate correlations between CO integrated intensity and HI integrated intens ity, peak brightness temperature, and line width at a resolution of 2.6 (~40 pc). We find that significant HI column density and peak brightness temperature are necessary but not sufficient conditions for CO detection, with many regions of strong HI emission not associated with molecular clouds. The large scatter in CO intensities for a given HI intensity persists even when averaging on scales of >200 pc, indicating that the scatter is not solely due to local conversion of HI into H_2 near GMCs. We focus on two possibilities to account for this scatter: either there exist spatial variations in the I(CO) to N(H_2) conversion factor, or a significant fraction of the atomic gas is not involved in molecular cloud formation. A weak tendency for CO emission to be suppressed for large HI linewidths supports the second hypothesis, insofar as large linewidths may be indicative of warm HI, and calls into question the likelihood of forming molecular clouds from colliding HI flows. We also find that the ratio of molecular to atomic gas shows no significant correlation (or anti-correlation) with the stellar surface density, though a correlation with midplane hydrostatic pressure P_h is found when the data are binned in P_h. The latter correlation largely reflects the increasing likelihood of CO detection at high HI column density.
79 - S.P. Ellingsen 2010
We report the results of a sensitive search for 12.2 GHz methanol maser emission towards a sample of eight high-mass star formation regions in the Large Magellanic Clouds which have been detected in other maser transitions. We detected one source tow ards the star formation region N105a. This is the first detection of a 12.2 GHz methanol maser outside our Galaxy. We also made near-contemporaneous observations of the 6.7 GHz methanol and 22 GHz water masers towards these sources, resulting in the detection of water maser emission in six new sources, including one associated with the strongest 6.7 GHz maser in the Magellanic Clouds IRAS 05011-6815. The majority of the maser sources are closely associated with objects identified as likely Young Stellar Objects (YSO) on the basis of Spitzer Space Telescope observations. We find that the YSOs associated with masers tend to be more luminous and have redder infrared colours than the sample as a whole. SED modeling of the YSOs shows that the masers are associated with sources of higher central mass, total luminosity and ambient density than the majority of YSOs in the LMC. This is consistent with the well-established relationship between luminous methanol and water masers and young, high-mass objects observed in the Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا