ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectra and time variability of galactic black-hole X-ray sources in the low/hard state

56   0   0.0 ( 0 )
 نشر من قبل Dimitrios Giannios
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

we propose a jet model for the low/hard state of black-hole X-ray sources which explains a) the X-ray spectra, b) the timelag spectra, c) the increase in the amplitude (QPO and high frequency) with increasing photon energy, and d) the narrowing of the autocorrelation function with increasing photon energy. The model (in its simplest form) assumes that i) there is a uniform magnetic field along the axis of the jet, ii) the electron density in the jet is inversely proportional to distance and iii) the jet is hotter near its center than at its periphery. We have performed Monte Carlo simulations of Compton upscattering of soft photons from the accretion disk and have found power-law high-energy spectra with photon number index in the range 1.5-2, power-law timelags versus Fourier frequency with index ~0.8, and an increase of the rms amplitude of the variability and a narrowing of the autocorrelation function with photon energy as they have been observed in Cygnus X-1.

قيم البحث

اقرأ أيضاً

244 - A. R. Rao 2013
Observations of Galactic black hole sources are traditionally done in the classical X-ray range (2 -- 10 keV) due to sensitivity constraints. Most of the accretion power, however, is radiated above 10 keV and the study of these sources in hard X-rays has the potential to unravel the radiation mechanisms operating at the inner region of the accretion disk, which is believed to be the seat of a myriad of fascinating features like jet emission, high frequency QPO emission etc. I will briefly summarise the long term hard X-ray observational features like spectral state identification, state transitions and hints of polarised emission, and describe the new insights that would be provided by the forthcoming Astrosat satellite, particularly emphasising the contributions expected from the CZT-Imager payload.
We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. We show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.
A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and Black Hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGN) appears very tight, with an intrinsic dispersion of 0.20 dex. T he intrinsic dispersion of 0.27 dex can be obtained if BH masses are estimated from the stellar velocity dispersions. We further test the uncertainties of mass estimates from XVAs for objects which have been observed multiple times with good enough data quality. The results show that the XVAs derived from multiple observations change by a factor of 3. This means that BH mass uncertainty from a single observation is slightly worse than either reverberation-mapping or stellar velocity dispersion measurements; however BH mass estimates with X-ray data only can be more accurate if the mean XVA value from more observations is used. Applying this relation, the BH mass of RE J1034+396 is found to be $4^{+3}_{-2} times 10^6$ $M_{odot}$. The high end of the mass range follows the relationship between the 2$f_0$ frequencies of high-frequency QPO and the BH masses derived from the Galactic X-ray binaries. We also calculate the high-frequency constant $C= 2.37 M_odot$ Hz$^{-1}$ from 21 reverberation-mapped AGN. As suggested by Gierlinski et al., $M_{rm BH}=C/C_{rm M}$, where $C_{rm M}$ is the high-frequency variability derived from XVA. Given the similar shape of power-law dominated X-ray spectra in ULXs and AGN, this can be applied to BH mass estimates of ULXs. We discuss the observed QPO frequencies and BH mass estimates in the Ultra-Luminous X-ray source M82 X-1 and NGC 5408 X-1 and favor ULXs as intermediate mass BH systems (abridged).
232 - M. Castro , F. DAmico , J. Braga 2014
Hard X-ray spectra of black hole binaries in the low/hard state are well modeled by thermal Comptonization of soft seed photons by a corona-type region with $kT$thinspace$sim 50${thinspace}keV and optical depth around 1. Previous spectral studies of 1E{thinspace}1740.7$-$2942, including both the soft and the hard X-ray bands, were always limited by gaps in the spectra or by a combination of observations with imaging and non-imaging instruments. In this study, we have used three rare nearly-simultaneous observations of 1E{thinspace}1740.7$-$1942 by both XMM-Newton and INTEGRAL satellites to combine spectra from four different imaging instruments with no data gaps, and we successfully applied the Comptonization scenario to explain the broadband X-ray spectra of this source in the low/hard state. For two of the three observations, our analysis also shows that, models including Compton reflection can adequately fit the data, in agreement with previous reports. We show that the observations can also be modeled by a more detailed Comptonization scheme. Furthermore, we find the presence of an iron K-edge absorption feature in one occasion, which confirms what had been previously observed by Suzaku. Our broadband analysis of this limited sample shows a rich spectral variability in 1E{thinspace}1740.7$-$2942 at the low/hard state, and we address the possible causes of these variations. More simultaneous soft/hard X-ray observations of this system and other black-hole binaries would be very helpful in constraining the Comptonization scenario and shedding more light on the physics of these systems.
195 - M. P. Muno 2004
We examine the X-ray spectra and variability of the sample of X-ray sources with L_X = 10^{31}-10^{33} erg s^{-1} identified within the inner 9 of the Galaxy. Very few of the sources exhibit intra-day or inter-month variations. We find that the spect ra of the point sources near the Galactic center are very hard between 2--8 keV, even after accounting for absorption. When modeled as power laws the median photon index is Gamma=0.7, while when modeled as thermal plasma we can only obtain lower limits to the temperature of kT>8 keV. The combined spectra of the point sources is similarly hard, with a photon index of Gamma=0.8. Strong line emission is observed from low-ionization, He-like, and H-like Fe, both in the average spectra and in the brightest individual sources. The line ratios of the highly-ionized Fe in the average spectra are consistent with emission from a plasma in thermal equilibrium. This line emission is observed whether average spectra are examined as a function of the count rate from the source, or as a function of the hardness ratios of individual sources. This suggests that the hardness of the spectra may in fact to due local absorption that partially-covers the X-ray emitting regions in the Galactic center systems. We suggest that most of these sources are intermediate polars, which (1) often exhibit hard spectra with prominent Fe lines, (2) rarely exhibit either flares on short time scales or changes in their mean X-ray flux on long time scales, and (3) are the most numerous hard X-ray sources with comparable luminosities in the Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا