ﻻ يوجد ملخص باللغة العربية
High resolution G-band images of the interior of a supergranulation cell show ubiquitous Bright Points (some 0.3 BPs per Mm^2). They are located in intergranular lanes and often form chains of elongated blobs whose smallest dimension is at the resolution limit (135 km on the Sun). Most of them live for a few minutes, having peak intensities from 0.8 to 1.8 times the mean photospheric intensity. These BPs are probably tracing intense magnetic concentrations, whose existence has been inferred in spectro-polarimetric measurements. Our finding provides a new convenient tool for the study of the inter-network magnetism, so far restricted to the interpretation weak polarimetric signals.
We present a visual determination of the number of bright points (BPs) existing in the quiet Sun, which are structures though to trace intense kG magnetic concentrations. The measurement is based on a 0.1 arcsec angular resolution G-band movie obtain
We study the motions of G band bright points (GBPs) in the quiet Sun to obtain the characteristics of different motion types. A high resolution image sequence taken with the Hinode/Solar Optical Telescope (SOT) is used, and GBPs are automatically tra
CONTEXT: The quiet Sun magnetic fields produce ubiquitous bright points (BPs) that cover a significant fraction of the solar surface. Their contribution to the total solar irradiance (TSI) is so-far unknown. AIMS: To measure the center-to-limb variat
The coronal magnetic field above a particular photospheric region will vanish at a certain number of points, called null points. These points can be found directly in a potential field extrapolation or their density can be estimated from Fourier spec
We detected 2.8 bright points (BPs) per Mm$^2$ in the Quiet Sun (QS) with the New Solar Telescope (NST) at Big Bear Solar Observatory; using the TiO 705.68 nm spectral line, at an angular resolution ~ 0.1 to obtain 30 min data sequence. Some BPs form