ترغب بنشر مسار تعليمي؟ اضغط هنا

The Number Of Magnetic Null Points In The Quiet Sun Corona

94   0   0.0 ( 0 )
 نشر من قبل Dana Longcope
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coronal magnetic field above a particular photospheric region will vanish at a certain number of points, called null points. These points can be found directly in a potential field extrapolation or their density can be estimated from Fourier spectrum of the magnetogram. The spectral estimate, which assumes that the extrapolated field is random, homogeneous and has Gaussian statistics, is found here to be relatively accurate for quiet Sun magnetograms from SOHOs MDI. The majority of null points occur at low altitudes, and their distribution is dictated by high wavenumbers in the Fourier spectrum. This portion of the spectrum is affected by Poisson noise, and as many as five-sixths of null points identified from a direct extrapolation can be attributed to noise. The null distribution above 1500 km is found to depend on wavelengths that are reliably measured by MDI in either its low-resolution or high-resolution mode. After correcting the spectrum to remove white noise and compensate for the modulation transfer function we find that a potential field extrapolation contains, on average, one magnetic null point, with altitude greater than 1.5 Mm, above every 322 square Mm patch of quiet Sun. Analysis of 562 quiet Sun magnetograms spanning the two latest solar minimum shows that the null point density is relatively constant with roughly 10% day-to-day variation. At heights above 1.5 Mm, the null point density decreases approximately as the inverse cube of height. The photospheric field in the quiet Sun is well approximated as that from discrete elements with mean flux 1.0e19 Mx distributed randomly with density n=0.007 per square Mm.



قيم البحث

اقرأ أيضاً

We present a visual determination of the number of bright points (BPs) existing in the quiet Sun, which are structures though to trace intense kG magnetic concentrations. The measurement is based on a 0.1 arcsec angular resolution G-band movie obtain ed with the Swedish Solar Telescope at the solar disk center. We find 0.97 BPs/Mm^2, which is a factor three larger than any previous estimate. It corresponds to 1.2 BPs per solar granule. Depending on the details of the segmentation, the BPs cover between 0.9% and 2.2% of the solar surface. Assuming their field strength to be 1.5 kG, the detected BPs contribute to the solar magnetic flux with an unsigned flux density between 13 G and 33 G. If network and inter-network regions are counted separately, they contain 2.2 BPs/Mm^2 and 0.85 BPs/Mm^2, respectively.
High resolution G-band images of the interior of a supergranulation cell show ubiquitous Bright Points (some 0.3 BPs per Mm^2). They are located in intergranular lanes and often form chains of elongated blobs whose smallest dimension is at the resolu tion limit (135 km on the Sun). Most of them live for a few minutes, having peak intensities from 0.8 to 1.8 times the mean photospheric intensity. These BPs are probably tracing intense magnetic concentrations, whose existence has been inferred in spectro-polarimetric measurements. Our finding provides a new convenient tool for the study of the inter-network magnetism, so far restricted to the interpretation weak polarimetric signals.
We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from {sc Sunrise}/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops which reach into the chromosphere or higher have one foot point in relatively strong magnetic field regions in the photosphere. $91%$ of the magnetic energy in the mid chromosphere (at a height of 1 Mm) is in field lines, whose stronger foot point has a strength of more than 300 G, i.e. above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker foot point has a strength $B < 300$ G and is located in the internetwork. Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the internetwork fields.
This work aims to understand the behavior of non-linear waves in the vicinity of a coronal null point. In previous works we have showed that high frequency waves are generated in such magnetic configuration. This paper studies those waves in detail i n order to provide a plausible explanation of their generation. We demonstrate that slow magneto-acoustic shock waves generated in the chromosphere propagate through the null point and produce a train of secondary shocks that escape along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 mHz. We speculate that this frequency may be sensitive to the atmospheric parameters in the corona and therefore can be used to probe the structure of this solar layer.
This work reviews our understanding of the magnetic fields observed in the quiet Sun. The subject has undergone a major change during the last decade (quiet revolution), and it will remain changing since the techniques of diagnostic employed so far a re known to be severely biased. Keeping these caveats in mind, our work covers the main observational properties of the quiet Sun magnetic fields: magnetic field strengths, unsigned magnetic flux densities, magnetic field inclinations, as well as the temporal evolution on short time-scales (loop emergence), and long time-scales (solar cycle). We also summarize the main theoretical ideas put forward to explain the origin of the quiet Sun magnetism. A final prospective section points out various areas of solar physics where the quiet Sun magnetism may have an important physical role to play (chromospheric and coronal structure, solar wind acceleration, and solar elemental abundances).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا