ﻻ يوجد ملخص باللغة العربية
The coronal magnetic field above a particular photospheric region will vanish at a certain number of points, called null points. These points can be found directly in a potential field extrapolation or their density can be estimated from Fourier spectrum of the magnetogram. The spectral estimate, which assumes that the extrapolated field is random, homogeneous and has Gaussian statistics, is found here to be relatively accurate for quiet Sun magnetograms from SOHOs MDI. The majority of null points occur at low altitudes, and their distribution is dictated by high wavenumbers in the Fourier spectrum. This portion of the spectrum is affected by Poisson noise, and as many as five-sixths of null points identified from a direct extrapolation can be attributed to noise. The null distribution above 1500 km is found to depend on wavelengths that are reliably measured by MDI in either its low-resolution or high-resolution mode. After correcting the spectrum to remove white noise and compensate for the modulation transfer function we find that a potential field extrapolation contains, on average, one magnetic null point, with altitude greater than 1.5 Mm, above every 322 square Mm patch of quiet Sun. Analysis of 562 quiet Sun magnetograms spanning the two latest solar minimum shows that the null point density is relatively constant with roughly 10% day-to-day variation. At heights above 1.5 Mm, the null point density decreases approximately as the inverse cube of height. The photospheric field in the quiet Sun is well approximated as that from discrete elements with mean flux 1.0e19 Mx distributed randomly with density n=0.007 per square Mm.
We present a visual determination of the number of bright points (BPs) existing in the quiet Sun, which are structures though to trace intense kG magnetic concentrations. The measurement is based on a 0.1 arcsec angular resolution G-band movie obtain
High resolution G-band images of the interior of a supergranulation cell show ubiquitous Bright Points (some 0.3 BPs per Mm^2). They are located in intergranular lanes and often form chains of elongated blobs whose smallest dimension is at the resolu
We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from {sc Sunrise}/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into
This work aims to understand the behavior of non-linear waves in the vicinity of a coronal null point. In previous works we have showed that high frequency waves are generated in such magnetic configuration. This paper studies those waves in detail i
This work reviews our understanding of the magnetic fields observed in the quiet Sun. The subject has undergone a major change during the last decade (quiet revolution), and it will remain changing since the techniques of diagnostic employed so far a