ترغب بنشر مسار تعليمي؟ اضغط هنا

Is the Initial Mass Function of Low Surface Brightness Galaxies Dominated by Low Mass Stars?

127   0   0.0 ( 0 )
 نشر من قبل Daisuke Kawata
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hyun-chul Lee




اسأل ChatGPT حول البحث

The rotation curves of low surface brightness (LSB) galaxies suggest that they possess significantly higher mass-to-light (M/L) ratios than their high surface brightness counterparts, indicating that LSB galaxies may be dark matter dominated. This interpretation is hampered by the difficulty of disentangling the disc and dark halo contributions from the disc dynamics of LSB galaxies. Recently, Fuchs (2002) has attempted such a disentanglement using spiral arm density wave and swing amplification theory, allowing an independent measurement of the disc mass; this work suggests that LSB discs are significantly more massive than previously believed. This would considerably reduce the amount of matter required in the dark halos in fitting the rotation curves. Interestingly, the high mass-to-light ratios derived for the discs appear inconsistent with standard stellar population synthesis models. In this paper, we investigate whether the high M/L ratios for the Fuchs LSB discs might be understood by adopting a very ``bottom heavy initial mass function (IMF). We find that an IMF with a power law exponent of around alpha=3.85 (compared to the standard Salpeter IMF, alpha=2.35) is sufficient to explain the unusually high M/L ratios of the Fuchs sample. Within the context of the models, the blue colours ((B-R)_0 < 1.0) of the sample galaxies result from being metal-poor ([Fe/H] = -1.5 ~ -1.0) and having undergone recent (~1-3 Gyr ago) star formation.

قيم البحث

اقرأ أيضاً

We present an updated investigation of the relation between large scale disk circular velocity, v_c, and bulge velocity dispersion, sigma_c. New bulge velocity dispersions are measured for a sample of 11 low surface brightness (LSB) and 7 high surfac e brightness (HSB) spiral galaxies for which v_c is known from published optical or HI rotation curves. We find that, while LSB galaxies appear to define the upper envelope of the region occupied by HSB galaxies (having relatively larger v_c for any given sigma_c), the distinction between LSB and HSB galaxies in the v_c-sigma_c plane becomes less pronounced for sigma_c <= 80 km/s. We conclude that either the scatter of the v_c-sigma_c relation is a function of v_c (and hence galaxy mass) or that the character of the v_c-sigma_c relation changes at v_c ~ 80 km/s. Some inplications of our findings are discussed.
We introduce a method for producing a galaxy sample unbiased by surface brightness and stellar mass, by selecting star-forming galaxies via the positions of core-collapse supernovae (CCSNe). Whilst matching $sim$2400 supernovae from the SDSS-II Super nova Survey to their host galaxies using IAC Stripe 82 legacy coadded imaging, we find $sim$150 previously unidentified low surface brightness galaxies (LSBGs). Using a sub-sample of $sim$900 CCSNe, we infer CCSN-rate and star-formation rate densities as a function of galaxy stellar mass, and the star-forming galaxy stellar mass function. Resultant star-forming galaxy number densities are found to increase following a power-law down to our low mass limit of $sim10^{6.4}$ M$_{odot}$ by a single Schechter function with a faint-end slope of $alpha = -1.41$. Number densities are consistent with those found by the EAGLE simulations invoking a $Lambda$-CDM cosmology. Overcoming surface brightness and stellar mass biases is important for assessment of the sub-structure problem. In order to estimate galaxy stellar masses, a new code for the calculation of galaxy photometric redshifts, zMedIC, is also presented, and shown to be particularly useful for small samples of galaxies.
The origin of brown dwarfs (BDs) is still an unsolved mystery. While the standard model describes the formation of BDs and stars in a similar way recent data on the multiplicity properties of stars and BDs show them to have different binary distribut ion functions. Here we show that proper treatment of these uncovers a discontinuity of the multiplicity-corrected mass distribution in the very-low-mass star (VLMS) and BD mass regime. A continuous IMF can be discarded with extremely high confidence. This suggests that VLMSs and BDs on the one hand, and stars on the other, are two correlated but disjoint populations with different dynamical histories. The analysis presented here suggests that about one BD forms per five stars and that the BD-star binary fraction is about 2%-3% among stellar systems.
114 - W.J.G. de Blok 2005
A recent study has claimed that the rotation curve shapes and mass densities of Low Surface Brightness (LSB) galaxies are largely consistent with $Lambda$CDM predictions, in contrast to a large body of observational work. I demonstrate that the metho d used to derive this conclusion is incapable of distinguishing the characteristic steep CDM mass-density distribution from the core-dominated mass-density distributions found observationally: even core-dominated pseudo-isothermal haloes would be inferred to be consistent with CDM. This method can therefore make no definitive statements on the (dis)agreement between the data and CDM simulations. After introducing an additional criterion that does take the slope of the mass-distribution into account I find that only about a quarter of the LSB galaxies investigated are possibly consistent with CDM. However, for most of these the fit parameters are so weakly constrained that this is not a strong conclusion. Only 3 out of 52 galaxies have tightly constrained solutions consistent with $Lambda$CDM. Two of these galaxies are likely dominated by stars, leaving only one possible dark matter dominated, CDM-consistent candidate, forming a mere 2 per cent of the total sample. These conclusions are based on comparison of data and simulations at identical radii and fits to the entire rotation curves. LSB galaxies that are consistent with CDM simulations, if they exist, seem to be rare indeed.
207 - Belinda Damian 2021
In the star formation process, the vital impact of environmental factors such as feedback from massive stars and stellar density on the form of the initial mass function (IMF) at low-mass end is yet to be understood. Hence a systematic, highly sensit ive observational analysis of a sample of regions under diverse environmental conditions is essential. We analyse the IMF of eight young clusters ($<$5 Myr), namely IC1848-West, IC1848-East, NGC 1893, NGC 2244, NGC 2362, NGC 6611, Stock 8 and Cygnus OB2, which are located at the Galactocentric distance ($R_g$) range $sim$6-12 kpc along with nearby cluster IC348 using deep near-IR photometry and Gaia DR2. These clusters are embedded in massive stellar environments of radiation strength $log(L_{FUV}/L_{odot})$ $sim$2.6 to 6.8, $log(L_{EUV})$ $sim$42.2 to 50.85 photons/s, with stellar density in the range of $sim$170 - 1220 stars/pc$^2$. After structural analysis and field decontamination we obtain an unbiased, uniformly sensitive sample of pre-main-sequence members of the clusters down to brown-dwarf regime. The lognormal fit to the IMF of nine clusters gives the mean characteristic mass ($m_c$) and $sigma$ of 0.32$pm$0.02 $M_odot$ and 0.47$pm$0.02, respectively. We compare the IMF with that of low- and high-mass clusters across the Milky Way. We also check for any systematic variation with respect to the radiation field strength, stellar density as well with $R_g$. We conclude that there is no strong evidence for environmental effect in the underlying form of the IMF of these clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا