ترغب بنشر مسار تعليمي؟ اضغط هنا

The Galaxy Stellar Mass Function and Low Surface Brightness Galaxies from Core-Collapse Supernovae

103   0   0.0 ( 0 )
 نشر من قبل Thomas Sedgwick
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a method for producing a galaxy sample unbiased by surface brightness and stellar mass, by selecting star-forming galaxies via the positions of core-collapse supernovae (CCSNe). Whilst matching $sim$2400 supernovae from the SDSS-II Supernova Survey to their host galaxies using IAC Stripe 82 legacy coadded imaging, we find $sim$150 previously unidentified low surface brightness galaxies (LSBGs). Using a sub-sample of $sim$900 CCSNe, we infer CCSN-rate and star-formation rate densities as a function of galaxy stellar mass, and the star-forming galaxy stellar mass function. Resultant star-forming galaxy number densities are found to increase following a power-law down to our low mass limit of $sim10^{6.4}$ M$_{odot}$ by a single Schechter function with a faint-end slope of $alpha = -1.41$. Number densities are consistent with those found by the EAGLE simulations invoking a $Lambda$-CDM cosmology. Overcoming surface brightness and stellar mass biases is important for assessment of the sub-structure problem. In order to estimate galaxy stellar masses, a new code for the calculation of galaxy photometric redshifts, zMedIC, is also presented, and shown to be particularly useful for small samples of galaxies.



قيم البحث

اقرأ أيضاً

We present HI spectral line and optical broadband images of the nearby low surface brightness dwarf galaxy KDG215. The HI images, acquired with the Karl G. Jansky Very Large Array (VLA), reveal a dispersion dominated ISM with only weak signatures of coherent rotation. The HI gas reaches a peak mass surface density of 6 M$_{odot}$ pc$^{-2}$ at the location of the peak surface brightness in the optical and the UV. Although KDG215 is gas-rich, the H$alpha$ non-detection implies a very low current massive star formation rate. In order to investigate the recent evolution of this system, we have derived the recent and lifetime star formation histories from archival Hubble Space Telescope images. The recent star formation history shows a peak star formation rate $sim$1 Gyr ago, followed by a decreasing star formation rate to the present day quiescent state. The cumulative star formation history indicates that a significant fraction of the stellar mass assembly in KDG215 has occurred within the last 1.25 Gyr. KDG215 is one of only a few known galaxies which demonstrates such a delayed star formation history. While the ancient stellar population (predominantly red giants) is prominent, the look-back time by which 50% of the mass of all stars ever formed had been created is among the youngest of any known galaxy.
126 - Patrick L. Kelly 2011
We have used images and spectra of the Sloan Digital Sky Survey to examine the host galaxies of 519 nearby supernovae. The colors at the sites of the explosions, as well as chemical abundances, and specific star formation rates of the host galaxies p rovide circumstantial evidence on the origin of each supernova type. We examine separately SN II, SN IIn, SN IIb, SN Ib, SN Ic, and SN Ic with broad lines (SN Ic-BL). For host galaxies that have multiple spectroscopic fibers, we select the fiber with host radial offset most similar to that of the SN. Type Ic SN explode at small host offsets, and their hosts have exceptionally strongly star-forming, metal-rich, and dusty stellar populations near their centers. The SN Ic-BL and SN IIb explode in exceptionally blue locations, and, in our sample, we find that the host spectra for SN Ic-BL show lower average oxygen abundances than those for SN Ic. SN IIb host fiber spectra are also more metal-poor than those for SN Ib, although a significant difference exists for only one of two strong-line diagnostics. SN Ic-BL host galaxy emission lines show strong central specific star formation rates. In contrast, we find no strong evidence for different environments for SN IIn compared to the sites of SN II. Because our supernova sample is constructed from a variety of sources, there is always a risk that sampling methods can produce misleading results. We have separated the supernovae discovered by targeted surveys from those discovered by galaxy-impartial searches to examine these questions and show that our results do not depend sensitively on the discovery technique.
The existence of galaxies with a surface brightness $mu$ lower than the night sky has been known since three decades. Yet, their formation mechanism and emergence within a $rmLambda CDM$ universe has remained largely undetermined. For the first time, we investigated the origin of Low Surface Brightness (LSB) galaxies with M$_{star}$$sim$10$^{9.5-10}$M$_{odot}$, which we are able to reproduce within hydrodynamical cosmological simulations from the NIHAO suite. The simulated and observed LSBs share similar properties, having large HI reservoir, extended star formation histories and effective radii, low S{e}rsic index and slowly rising rotation curves. The formation mechanism of these objects is explored: simulated LSBs form as a result of co-planar co-rotating mergers and aligned accretion of gas at early times, while perpendicular mergers and mis-aligned gas accretion result in higher $mu$ galaxies by $z$=0. The larger the merger, the stronger the correlation between merger orbital configuration and final $mu$. While the halo spin parameter is consistently high in simulated LSB galaxies, the impact of halo concentration, feedback-driven gas outflows and merger time only plays a minor-to-no role in determining $mu$. Interestingly, the formation scenario of such `classical LSBs differs from the one of less massive, M$_{star}$$sim$10$^{7-9}$M$_{odot}$, Ultra-Diffuse Galaxies, the latter resulting from the effects of SNae driven gas outflows: a M$_{star}$ of $sim$10$^9$M$_{odot}$ thus represents the transition regime between a feedback-dominated to an angular momentum-dominated formation scenario in the LSB realm. Observational predictions are offered regarding spatially resolved star formation rates through LSB discs: these, together with upcoming surveys, can be used to verify the proposed emergence scenario of LSB galaxies.
Searches for low-surface-brightness galaxies (LSBGs) in galaxy surveys are plagued by the presence of a large number of artifacts (e.g., objects blended in the diffuse light from stars and galaxies, Galactic cirrus, star-forming regions in the arms o f spiral galaxies, etc.) that have to be rejected through time consuming visual inspection. In future surveys, which are expected to collect hundreds of petabytes of data and detect billions of objects, such an approach will not be feasible. We investigate the use of convolutional neural networks (CNNs) for the problem of separating LSBGs from artifacts in survey images. We take advantage of the fact that, for the first time, we have available a large number of labeled LSBGs and artifacts from the Dark Energy Survey, that we use to train, validate, and test a CNN model. That model, which we call DeepShadows, achieves a test accuracy of $92.0 %$, a significant improvement relative to feature-based machine learning models. We also study the ability to use transfer learning to adapt this model to classify objects from the deeper Hyper-Suprime-Cam survey, and we show that after the model is retrained on a very small sample from the new survey, it can reach an accuracy of $87.6%$. These results demonstrate that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
With the aim of assessing if low surface brightness galaxies host stellar bars, and study the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 dataset to construct a large volume-limited sample of gala xies, and segregate the galaxies as low and high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than the one found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas-richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars shows a strong dependence on the surface brightness, and although some of this dependence is attributed to the gas content, even at fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا