ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra Observation of the Central Region of the Cooling Flow Cluster Abell 262: A Radio Source that is a Shadow of its Former Self?

92   0   0.0 ( 0 )
 نشر من قبل Elizabeth L. Blanton
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a Chandra observation of the cooling flow cluster Abell 262. Spectral fits show that the intracluster medium (ICM) in A262 cools by a factor of three from 2.7 keV to 0.9 keV at the cluster center. A mass deposition rate of Mdot = 19 +6/-5 Msun/yr is measured. Complex structure is found in the very inner regions of the cluster, including knots of emission and a clear deficit of emission to the east of the cluster center. The bright X-ray structures are located in the same regions as optical line emission, indicating that cooling to low temperatures has occurred in these regions. The X-ray deficit is spatially coincident with the eastern radio lobe associated with the active galactic nucleus hosted by the central cD galaxy. The region surrounding the X-ray hole is cool, and shows no evidence that it has been strongly shocked. This joins the ranks of other cooling flow clusters with Chandra-detected bubbles blown by central radio sources. This source is different than the other well-known cases, in that the radio source is orders of magnitude less luminous and has produced a much smaller bubble. Comparing the energy output of the radio source with the luminosity of the cooling gas shows that energy transferred to the ICM from the radio source is insufficient to offset the cooling flow unless the radio source is currently experiencing a less powerful than average outburst, and was more powerful in the past.



قيم البحث

اقرأ أيضاً

We present an analysis of the Chandra X-ray observation of Abell 2052, including large scale properties of the cluster as well as the central region which includes the bright radio source, 3C 317. We present temperature and abundance profiles using b oth projected and deprojected spectral analyses. The cluster shows the cooling flow signatures of excess surface brightness above a beta- model at the cluster center, and a temperature decline into the center of the cluster. The heavy element abundances initially increase into the center, but decline within 30 arcsec. Temperature and abundance maps show that the X-ray bright shells surrounding the radio source are the coolest and least abundant regions in the cluster. The mass-deposition rate in the cooling flow is 26 < Mdot < 42 Msun/yr. This rate is ~ a factor of three lower than the rates found with previous X-ray observatories. Based on a stellar population analysis using imaging and spectra at wavelengths spanning the far UV to the NIR, we find a star formation rate of 0.6 Msun/yr within a 3 arcsec radius of the nucleus of the central cluster galaxy. Total and gas mass profiles for the cluster are also determined. We investigate additional sources of pressure in the X-ray holes formed by the radio source, and limit the temperature of any hot, diffuse, thermal component which provides the bulk of the pressure in the holes to kT > 20 keV. We calculate the magnetic field in the bright-shell region and find B ~ 11 muG. The current luminosity of the central AGN is L_X = 7.9 x 10^41 erg/s, and its spectrum is well-fitted by a power-law model with no excess absorption above the Galactic value. The energy output from several radio outbursts, occurring episodically over the lifetime of the cluster, may be sufficient to offset the cooling flow near the center. (Abridged)
We present a Chandra observation of Abell 2052, a cooling flow cluster with a central cD that hosts the complex radio source 3C 317. The data reveal ``holes in the X-ray emission that are coincident with the radio lobes. The holes are surrounded by b right ``shells of X-ray emission. The data are consistent with the radio source displacing and compressing, and at the same time being confined by, the X-ray gas. The compression of the X-ray shells appears to have been relatively gentle and, at most, slightly transonic. The pressure in the X-ray gas (the shells and surrounding cooler gas) is approximately an order of magnitude higher than the minimum pressure derived for the radio source, suggesting that an additional source of pressure is needed to support the radio plasma. The compression of the X-ray shells has speeded up the cooling of the shells, and optical emission line filaments are found coincident with the brightest regions of the shells.
221 - E. L. Blanton 2009
We present results from a deep Chandra observation of Abell 2052. A2052 is a bright, nearby, cooling flow cluster, at a redshift of z=0.035. Concentric surface brightness discontinuities are revealed in the cluster center, and these features are cons istent with shocks driven by the AGN, both with Mach numbers of approximately 1.2. The southern cavity in A2052 now appears to be split into two cavities with the southernmost cavity likely representing a ghost bubble from earlier radio activity. There also appears to be a ghost bubble present to the NW of the cluster center. The cycle time measured for the radio source is approximately 2 x 10^7 yr using either the shock separation or the rise time of the bubbles. The energy deposited by the radio source, including a combination of direct shock heating and heating by buoyantly rising bubbles inflated by the AGN, can offset the cooling in the core of the cluster.
150 - Yuanyuan Su 2016
Abell~1142 is a low-mass galaxy cluster at low redshift containing two comparable Brightest Cluster Galaxies (BCG) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from ei ther BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters with each containing one BCG. The BCGs are merging at a relative velocity of ~1200 km/s. This ongoing merger may have shock-heated the ICM from ~ 2 keV to above 3 keV, which would explain the anomalous L_X--T_X scaling relation for this system. This merger may have displaced the metal-enriched cool core of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.
105 - Motokazu Takizawa 2003
We present the results of a {it Chandra} observation of the central region of Abell 3112. This cluster has a powerful radio source in the center and was believed to have a strong cooling flow. The X-ray image shows that the intracluster medium (ICM) is distributed smoothly on large scales, but has significant deviations from a simple concentric elliptical isophotal model near the center. Regions of excess emission appear to surround two lobe-like radio-emitting regions. This structure probably indicates that hot X-ray gas and radio lobes are interacting. From an analysis of the X-ray spectra in annuli, we found clear evidence for a temperature decrease and abundance increase toward the center. The X-ray spectrum of the central region is consistent with a single-temperature thermal plasma model. The contribution of X-ray emission from a multiphase cooling flow component with gas cooling to very low temperatures locally is limited to less than 10% of the total emission. However, the whole cluster spectrum indicates that the ICM is cooling significantly as a whole, but in only a limited temperature range ($geq 2$ keV). Inside the cooling radius, the conduction timescales based on the Spitzer conductivity are shorter than the cooling timescales. We detect an X-ray point source in the cluster center which is coincident with the optical nucleus of the central cD galaxy and the core of the associated radio source. The X-ray spectrum of the central point source can be fit by a 1.3 keV thermal plasma and a power-law component whose photon index is 1.9. The thermal component is probably plasma associated with the cD galaxy. We attribute the power-law component to the central AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا