ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra Observations of the Central Region of Abell 3112

106   0   0.0 ( 0 )
 نشر من قبل Motokazu Takizawa
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Motokazu Takizawa




اسأل ChatGPT حول البحث

We present the results of a {it Chandra} observation of the central region of Abell 3112. This cluster has a powerful radio source in the center and was believed to have a strong cooling flow. The X-ray image shows that the intracluster medium (ICM) is distributed smoothly on large scales, but has significant deviations from a simple concentric elliptical isophotal model near the center. Regions of excess emission appear to surround two lobe-like radio-emitting regions. This structure probably indicates that hot X-ray gas and radio lobes are interacting. From an analysis of the X-ray spectra in annuli, we found clear evidence for a temperature decrease and abundance increase toward the center. The X-ray spectrum of the central region is consistent with a single-temperature thermal plasma model. The contribution of X-ray emission from a multiphase cooling flow component with gas cooling to very low temperatures locally is limited to less than 10% of the total emission. However, the whole cluster spectrum indicates that the ICM is cooling significantly as a whole, but in only a limited temperature range ($geq 2$ keV). Inside the cooling radius, the conduction timescales based on the Spitzer conductivity are shorter than the cooling timescales. We detect an X-ray point source in the cluster center which is coincident with the optical nucleus of the central cD galaxy and the core of the associated radio source. The X-ray spectrum of the central point source can be fit by a 1.3 keV thermal plasma and a power-law component whose photon index is 1.9. The thermal component is probably plasma associated with the cD galaxy. We attribute the power-law component to the central AGN.

قيم البحث

اقرأ أيضاً

The archival XMM-Newton data of the central region of M31 were analyzed for diffuse X-ray emission. Point sources with the 0.5--10 keV luminosity exceeding $sim 4 times 10^{35}$ erg s$^{-1}$ were detected. Their summed spectra are well reproduced by a combination of a disk black-body component and a black-body component, implying that the emission mainly comes from an assembly of luminous low-mass X-ray binaries. After excluding these point sources, spectra were accumulated over a circular region of $6arcmin$ (1.2 kpc) centered on the nucleus. In the energy range above 2 keV, these residual spectra are understood mainly as contributions of unresolved faint sources and spill-over of photons from the excluded point sources. There is in addition a hint of a $sim 6.6$ keV line emission, which can be produced by a hot (temperature several keV) thin-thermal plasma. Below 2 keV, the spectra involve three additional softer components expressed by thin-thermal plasma emission models, of which the temperatures are $sim 0.6$, $sim 0.3$, and $sim 0.1$ keV. Their 0.5--10 keV luminosities within 6$arcmin$ are measured to be $sim 1.2 times 10^{38}$ erg s$^{-1}$, $sim 1.6 times 10^{38}$ erg s$^{-1}$, and $sim 4 times 10^{37}$ erg s$^{-1}$ in the order of decreasing temperature. The archival Chandra data of the central region of M31 yielded consistent results. By incorporating different annular regions, all the three softer thermal components were confirmed to be significantly extended. These results are compared with reports from previous studies. A discussion is presented on the origin of each thermal emission component.
Chandra ACIS-S observations of the galaxy cluster A3112 feature the presence of an excess of X-ray emission above the contribution from the diffuse hot gas, which can be equally well modeled with an additional non-thermal power-law model or with a lo w-temperature thermal model of low metal abundance. We show that the excess emission cannot be due to uncertainties in the background subtraction or in the Galactic HI column density. Calibration uncertainties in the ACIS detector that may affect our results are addressed by comparing the Chandra data to XMM MOS and PN spectra. While differences between the three instruments remain, all detect the excess in similar amounts, providing evidence against an instrumental nature of the excess. Given the presence of non-thermal radio emission near the center of A3112, we argue that the excess X-ray emission is of non-thermal nature and distributed throughout the entire X-ray bandpass, from soft to hard X-rays. The excess can be explained with the presence of a population of relativistic electrons with ~7% of the clusters gas pressure. We also discuss a possible thermal nature of the excess, and examine the problems associated with such interpretation.
We present observations at 250, 350, and 500 um of the nearby galaxy cluster Abell 3112 (z=0.075) carried out with BLAST, the Balloon-borne Large Aperture Submillimeter Telescope. Five cluster members are individually detected as bright submillimetre sources. Their far-infrared SEDs and optical colours identify them as normal star-forming galaxies of high mass, with globally evolved stellar populations. They all have B-R colours of 1.38+/-0.08, transitional between the blue, active population and the red, evolved galaxies that dominate the cluster core. We stack to determine the mean submillimetre emission from all cluster members, which is determined to be 16.6+/-2.5, 6.1+/-1.9, and 1.5+/-1.3 mJy at 250, 350, and 500 um, respectively. Stacking analyses of the submillimetre emission of cluster members reveal trends in the mean far-infrared luminosity with respect to cluster-centric radius and Ks-band magnitude. We find that a large fraction of submillimetre emission comes from the boundary of the inner, virialized region of the cluster, at cluster-centric distances around R_500. Stacking also shows that the bulk of the submillimetre emission arises in intermediate-mass galaxies (L<L*), with Ks magnitude ~1 mag fainter than the giant ellipticals. The results and constraints obtained in this work will provide a useful reference for the forthcoming surveys to be conducted on galaxy clusters by Herschel.
123 - M. E. Machacek 2001
We present results from two observations (combined exposure of ~17 ks) of galaxy cluster A2218 using the Advanced CCD Imaging Spectrometer on board the Chandra X-ray Observatory that were taken on October 19, 1999. Using a Raymond-Smith single temper ature plasma model corrected for galactic absorption we find a mean cluster temperature of kT = 6.9+/-0.5 keV, metallicity of 0.20+/-0.13 (errors are 90 % CL) and rest-frame luminosity in the 2-10 keV energy band of 6.2x10^{44} erg/s in a LambdaCDM cosmology with H_0=65 km/s/Mpc. The brightness distribution within 4.2 of the cluster center is well fit by a simple spherical beta model with core radius 66.4 and beta = 0.705 . High resolution Chandra data of the inner 2 of the cluster show the x-ray brightness centroid displaced ~22 from the dominant cD galaxy and the presence of azimuthally asymmetric temperature variations along the direction of the cluster mass elongation. X-ray and weak lensing mass estimates are in good agreement for the outer parts (r > 200h^{-1}) of the cluster; however, in the core the observed temperature distribution cannot reconcile the x-ray and strong lensing mass estimates in any model in which the intracluster gas is in thermal hydrostatic equilibrium. Our x-ray data are consistent with a scenario in which recent merger activity in A2218 has produced both significant non-thermal pressure in the core and substructure along the line of sight; each of these phenomena probably contributes to the difference between lensing and x-ray core mass estimates.
To better understand the mechanism or mechanisms that lead to AGN activity today, we measure the X-ray AGN fraction in a new sample of nearby clusters and examine how it varies with galaxy properties, projected cluster-centric radius, and cluster vel ocity dispersion. We present new wide-field Chandra X-ray Observatory observations of Abell 85, Abell 754 and the background cluster Abell 89B out to their virial radii. Out of seventeen X-ray sources associated with galaxies in these clusters, we classify seven as X-ray AGN with L_{X,B} > 10^{41} erg/s. Only two of these would be classified as AGN based on their optical spectra. We combine these observations with archival data to create a sample of X-ray AGN from six z < 0.08 clusters and find that 3.4+1.1/-0.8% of M_R < -20 galaxies host X-ray AGN with L_{X,B} > 10^{41} erg/s. We find that more X-ray AGN are detected in more luminous galaxies and attribute this to larger spheriods in more luminous galaxies and increased sensitivity to lower Eddington-rate accretion from black holes in those spheroids. At a given X-ray luminosity limit, more massive black holes can be accreting less efficiently, yet still be detected. If interactions between galaxies are the principal drivers of AGN activity, then the AGN fraction should be higher in lower velocity dispersion clusters and the outskirts of clusters. However, the tendency of the most massive and early-type galaxies to lie in the centers of the richest clusters could dilute such trends. While we find no variation in the AGN fraction with projected cluster-centric radius, we do find that the AGN fraction increases significantly from 2.6+1.0/-0.8% in rich clusters to 10.0+6.2/-4.3% in those with lower velocity dispersions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا