ترغب بنشر مسار تعليمي؟ اضغط هنا

The Highly Relativistic Kiloparsec-Scale Jet of the Gamma-Ray Quasar 0827+243

46   0   0.0 ( 0 )
 نشر من قبل Svetlana Jorstad
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Chandra X-ray (0.2-8 keV) and Very Large Array radio (15 and 5 GHz) images of the $gamma$-ray bright, superluminal quasar 0827+243. The X-ray jet bends sharply--by ~90 deg., presumably amplified by projection effects--5 from the core. Only extremely weak radio emission is detected between the nuclear region and the bend. The X-ray continuum spectrum of the combined emission of the knots is rather flat, with a slope of $-0.4pm 0.2$, while the 5-15 GHz spectra are steeper for knots detected in the radio. These characteristics, as well as non-detection of the jet in the optical band by the Hubble Space Telescope, pose challenges to models for the spectral energy distributions (SEDs) of the jet features. The SEDs could arise from pure synchrotron emission from either a single or dual population of relativistic electrons only if the minimum electron energy per unit mass $gamma_{min} gtrsim 1000$. Alternatively, the X-ray emission could result from inverse Compton scattering of the Cosmic Microwave Background photons by electrons with Lorentz factors as low as $gamma sim 15$. In all models, the bulk Lorentz factor of the jet flow $Gammagtrsim 20$ found on parsec scales must continue without substantial deceleration out to 800 kpc (deprojected) from the nucleus. Deceleration does appear to occur at and beyond the sharp bend, such that the flow could be only mildly relativistic at the end of the jet.

قيم البحث

اقرأ أيضاً

122 - T. An , B.-Q. Lao , W. Zhao 2016
The quasar 3C~286 is one of two compact steep spectrum sources detected by the {it Fermi}/LAT. Here, we investigate the radio properties of the parsec(pc)-scale jet and its (possible) association with the $gamma$-ray emission in 3C~286. The Very Long Baseline Interferometry (VLBI) images at various frequencies reveal a one-sided core--jet structure extending to the southwest at a projected distance of $sim$1 kpc. The component at the jet base showing an inverted spectrum is identified as the core, with a mean brightness temperature of $2.8times 10^{9}$~K. The jet bends at about 600 pc (in projection) away from the core, from a position angle of $-135^circ$ to $-115^circ$. Based on the available VLBI data, we inferred the proper motion speed of the inner jet as $0.013 pm 0.011$ mas yr$^{-1}$ ($beta_{rm app} = 0.6 pm 0.5$), corresponding to a jet speed of about $0.5,c$ at an inclination angle of $48^circ$ between the jet and the line of sight of the observer. The brightness temperature, jet speed and Lorentz factor are much lower than those of $gamma$-ray-emitting blazars, implying that the pc-scale jet in 3C~286 is mildly relativistic. Unlike blazars in which $gamma$-ray emission is in general thought to originate from the beamed innermost jet, the location and mechanism of $gamma$-ray emission in 3C~286 may be different as indicated by the current radio data. Multi-band spectrum fitting may offer a complementary diagnostic clue of the $gamma$-ray production mechanism in this source.
Centaurus A (Cen~A) is the nearest active radio galaxy, which has kiloparsec (kpc) scale jets and {giant lobes detected by various instruments in radio and X-ray frequency ranges}. The $Fermi$--Large Area Telescope and High Energy Stereoscopic System (HESS) confirmed, that Cen~A is a very high-energy (VHE; $> 0.1$~TeV) $gamma$-ray emitter with a known spectral {softening} in the energy range from a few GeV to TeV. In this work, we consider a synchrotron self-Compton model in the nucleus for the broad band spectrum {below the break energy} and an external Compton model in kpc-scale jets for the $gamma$-ray excess. Our results show that the observed $gamma$-ray excess can be suitably described by the inverse Compton scattering of the starlight photons in the kpc-scale jets, which is consistent with the recent tentative report by the HESS on the spatial extension of the TeV emission along the jets. Considering the spectral fitting results, the excess can only be seen in Cen~A, which is probably due to two factors: (1) the host galaxy is approximately 50 times more luminous than other typical radio galaxies and (2) the core $gamma$-ray spectrum quickly decays above a few MeV due to the low maximum electron Lorentz factor of $gamma_{rm c}=2.8 times 10^3$ resulting from the large magnetic field of 3.8~G in the core. By the comparison with other $gamma$-ray detected radio galaxies, we found that the magnetic field strength of relativistic jets scales with the distance from the central black holes $d$ with $B (d) propto d^{-0.88 pm 0.14}$.
The gravitational wave (GW) memory from a radiating and decelerating point mass is studied in detail. It is found that for isotropic photon emission the memory generated from the photons is essentially the same with the memory from the point mass tha t radiated the photons so that it is anti-beamed. On the other hand, for anisotropic emission the memory from the photons may have a non-vanishing amplitude even if it is seen with small viewing angles. In the decelerating phases of gamma-ray burst (GRB) jets the kinetic energy of the jet is converted into the energy of gamma-ray photons. Then it would be possible to observe a variation in the GW memory associated with GRB jets on the timescale of the gamma-ray emission if the emission is partially anisotropic. Such an anisotropy in the gamma-ray emission has been suggested by the polarizations detected in recent observations of GRBs. The GW memory from GRB jets would provide clues to clarifying the geometry of the jets and the emission mechanism in GRBs. Thus it will be an interesting target for the next generation detectors of the GWs.
We analyze total and polarized intensity images of the quasar 3C 454.3 obtained monthly with the VLBA at 43 GHz within the ongoing Boston U. monitoring program of gamma-ray blazars started in June 2007. The data are supplemented by VLBA observations performed during intense campaigns of 2 week duration when the quasar was observed 3 times per campaign. We find a strong increase of activity in the parsec-scale jet of the quasar during high gamma-ray states in December 2009, April 2010, and November 2010. We detect new superluminal knots, K09 and K10, associated with the autumn 2009 and 2010 outbursts, respectively, and compare their kinematic parameters. We analyze optical polarimetric behavior along with polarization parameters of the parsec-scale jet and outline similarities and differences in polarization properties across wavelengths. The results of the analysis support the conclusions that the optical polarized emission is produced in a region located in the vicinity of the mm-wave core of the jet of the quasar, and that the gamma-ray outbursts occur when a superluminal disturbance passes through the core.
We analyze the multifrequency behavior of the quasar 3C 454.3 during three prominent gamma-ray outbursts: 2009 Autumn, 2010 Spring, and 2010 Autumn. The data reveal a repeating pattern, including a triple flare structure, in the properties of each ga mma-ray outburst, which implies similar mechanism(s) and location for all three events. The multi-frequency behavior indicates that the lower frequency events are co-spatial with the gamma-ray outbursts, although the gamma-ray emission varies on the shortest timescales. We determine that the variability from UV to IR wavelengths during an outburst results from a single synchrotron component whose properties do not change significantly over the different outbursts. Despite a general increase in the degree of optical linear polarization during an outburst, the polarization drops significantly at the peak of the gamma-ray event, which suggests that both shocks and turbulent processes are involved. We detect two disturbances (knots) with superluminal apparent speeds in the parsec-scale jet associated with the outbursts in 2009 Autumn and 2010 Autumn. The kinematic properties of the knots can explain the difference in amplitudes of the gamma-ray events, while their millimeter-wave polarization is related to the optical polarization during the outbursts. We interpret the multi-frequency behavior within models involving either a system of standing conical shocks or magnetic reconnection events located in the parsec-scale millimeter-wave core of the jet. We argue that gamma-ray outbursts with variability timescales as short as ~ 3 hr can occur on parsec scales if flares take place in localized regions such as turbulent cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا