ﻻ يوجد ملخص باللغة العربية
We analyze the multifrequency behavior of the quasar 3C 454.3 during three prominent gamma-ray outbursts: 2009 Autumn, 2010 Spring, and 2010 Autumn. The data reveal a repeating pattern, including a triple flare structure, in the properties of each gamma-ray outburst, which implies similar mechanism(s) and location for all three events. The multi-frequency behavior indicates that the lower frequency events are co-spatial with the gamma-ray outbursts, although the gamma-ray emission varies on the shortest timescales. We determine that the variability from UV to IR wavelengths during an outburst results from a single synchrotron component whose properties do not change significantly over the different outbursts. Despite a general increase in the degree of optical linear polarization during an outburst, the polarization drops significantly at the peak of the gamma-ray event, which suggests that both shocks and turbulent processes are involved. We detect two disturbances (knots) with superluminal apparent speeds in the parsec-scale jet associated with the outbursts in 2009 Autumn and 2010 Autumn. The kinematic properties of the knots can explain the difference in amplitudes of the gamma-ray events, while their millimeter-wave polarization is related to the optical polarization during the outbursts. We interpret the multi-frequency behavior within models involving either a system of standing conical shocks or magnetic reconnection events located in the parsec-scale millimeter-wave core of the jet. We argue that gamma-ray outbursts with variability timescales as short as ~ 3 hr can occur on parsec scales if flares take place in localized regions such as turbulent cells.
We use a combination of high-resolution very long baseline interferometry (VLBI) radio and multi-wavelength flux density and polarization observations to constrain the physics of the dissipation mechanism powering the broadband flares in 3C 279 durin
We analyze total and polarized intensity images of the quasar 3C 454.3 obtained monthly with the VLBA at 43 GHz within the ongoing Boston U. monitoring program of gamma-ray blazars started in June 2007. The data are supplemented by VLBA observations
The quasar 3C~286 is one of two compact steep spectrum sources detected by the {it Fermi}/LAT. Here, we investigate the radio properties of the parsec(pc)-scale jet and its (possible) association with the $gamma$-ray emission in 3C~286. The Very Long
We present a comprehensive 5-43 GHz VLBA study of the blazar 3C 273 initiated after an onset of a strong $gamma$-ray flare in this source. We have analyzed the kinematics of new-born components, light curves, and position of the apparent core to pinp
We present the analysis of the radio jet evolution of the radio galaxy 3C 120 during a period of prolonged gamma-ray activity detected by the Fermi satellite between December 2012 and October 2014. We find a clear connection between the gamma-ray and