ترغب بنشر مسار تعليمي؟ اضغط هنا

RXTE broadband X-ray spectra of intermediate polars and white dwarf mass estimates

201   0   0.0 ( 0 )
 نشر من قبل Revnivtsev Mikhail
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of an analysis of broadband spectra of 14 intermediate polars obtained with the RXTE observatory (PCA and HEXTE spectrometers, 3-100 keV). By means of our calculations of the structure and the emergent spectrum of the post-shock region of intermediate polars we fitted the observed spectra and obtained estimates of the white dwarf masses. The estimated masses are compared with masses obtained by other authors.



قيم البحث

اقرأ أيضاً

114 - T.L. Parker 2005
We present an analysis of 30 archival ASCA and RXTE X-ray observations of 16 intermediate polars to investigate the nature of their orbital modulation. We show that X-ray orbital modulation is widespread amongst these systems, but not ubiquitous as i ndicated by previous studies that included fewer objects. Only seven of the sixteen systems show a clearly statistically significant modulation depth whose amplitude decreases with increasing X-ray energy. Interpreting this as due to photoelectric absorption in material at the edge of an accretion disc would imply that such modulations are visible for all system inclination angles in excess of 60 degrees. However, it is also apparent that the presence of an X-ray orbital modulation can appear and disappear on a timescale of ~years or months in an individual system. This may be evidence for the presence of a precessing, tilted accretion disc, as inferred in some low mass X-ray binaries.
88 - Nazma Islam , Koji Mukai 2021
In magnetic Cataclysmic Variables (mCVs), X-ray radiation originates from the shock heated multi-temperature plasma in the post-shock region near the white dwarf surface. These X-rays are modified by a complex distribution of absorbers in the pre-sho ck region. The presence of photo-ionized lines and warm absorber features in the soft X-ray spectra of these mCVs suggests that these absorbers are ionized. We developed the ionized complex absorber model zxipab, which is represented by a power-law distribution of ionized absorbers in the pre-shock flow. Using the ionized absorber model zxipab along with a cooling flow model and a reflection component, we model the broadband Chandra/HETG and NuSTAR spectra of two IPs: NY Lup and V1223 Sgr. We find that this model describes well many of the H and He like emission lines from medium Z elements, which arises from the collisionally excited plasma. However the model fails to account for some of the He like triplets from medium Z elements, which points towards its photo-ionization origin. We do not find a compelling evidence for a blackbody component to model the soft excess seen in the residuals of the Chandra/HETG spectra, which could be due to the uncertainties in estimation of the interstellar absorption of these sources using Chandra/HETG data and/or excess fluxes seen in some photo-ionized emission lines which are not accounted by the cooling flow model. We describe the implications of this model with respect to the geometry of the pre-shock region in these two IPs.
The disc instability model (DIM) has been very successful in explaining the dwarf nova outbursts observed in cataclysmic variables. When, as in intermediate polars (IP), the accreting white dwarf is magnetized, the disc is truncated at the magnetosph eric radius, but for mass-transfer rates corresponding to the thermal-viscous instability such systems should still exhibit dwarf-nova outbursts. Yet, the majority of intermediate polars in which the magnetic field is not large enough to completely disrupt the accretion disc, seem to be stable, and the rare observed outbursts, in particular in systems with long orbital periods, are much shorter than normal dwarf-nova outbursts. We investigate the predictions of the disc instability model for intermediate polars in order to determine which of the observed properties of these systems can be explained by the DIM. We use our numerical code for the time evolution of accretion discs, modified to include the effects of the magnetic field, with constant or variable mass transfer from the secondary star. We show that intermediate polars have mass transfer low enough and magnetic fields large enough to keep the accretion disc stable on the cold equilibrium branch. We show that the infrequent and short outbursts observed in long period systems, such as e.g., TV Col, cannot be attributed to the thermal-viscous instability of the accretion disc, but instead have to be triggered by an enhanced mass-transfer from the secondary, or, more likely, by some instability coupling the white dwarf magnetic field with that generated by the magnetorotational instability operating in the accretion disc. Longer outbursts (a few days) could result from the disc instability.
219 - P. A. Evans 2007
We make a systematic analysis of the XMM-Newton X-ray spectra of intermediate polars (IPs) and find that, contrary to the traditional picture, most show a soft blackbody component. We compare the results with those from AM Her stars and deduce that t he blackbody emission arises from reprocessing of hard X-rays, rather than from the blobby accretion sometimes seen in AM Hers. Whether an IP shows a blackbody component appears to depend primarily on geometric factors: a blackbody is not seen in those that have accretion footprints that are always obscured by accretion curtains or are only visible when foreshortened on the white-dwarf limb. Thus we argue against previous suggestions that the blackbody emission characterises a separate sub-group of IPs which are more akin to AM Hers, and develop a unified picture of the blackbody emission in these stars.
We analyze the first X-ray observations with XMM-Newton of RXS J070407.9+262501 and 1RXS 180340.0+401214, in order to characterize their broad-band temporal and spectral properties, also in the UV/optical domain, and to confirm them as Intermediate P olars. For both objects, we performed a timing analysis of the X-ray and UV/optical light curves to detect the white dwarf spin pulsations and study their energy dependence. For 1RXS 180340.0+401214 we also analyzed optical spectroscopic data to determine the orbital period. X-ray spectra were analyzed in the 0.2-10.0 keV range to characterize the emission properties of both sources. We find that the X-ray light curves of both systems are energy dependent and are dominated, below 3-5 keV, by strong pulsations at the white dwarf rotational periods (480 s for 1RXS J070407.9+262501 and 1520.5 s for 1RXS 180340.0+401214). In 1RXS 180340.0+401214 we also detect an X-ray beat variability at 1697 s which, together with our new optical spectroscopy, favours an orbital period of 4.4 hr that is longer than previously estimated. Both systems show complex spectra with a hard (up to 40 keV) optically thin and a soft (85-100 eV) optically thick components heavily absorbed by material partially covering the X-ray sources. Our observations confirm the two systems as Intermediate Polars and also add them as new members of the growing group of soft systems which show the presence of a soft X-ray blackbody component. Differences in the temperatures of the blackbodies are qualitatively explained in terms of reprocessing over different sizes of the white dwarf spot. We suggest that systems showing cooler soft X-ray blackbody components also possess white dwarfs irradiated by cyclotron radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا