ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of complex ionized absorber in the soft X-ray spectra of Intermediate Polars

89   0   0.0 ( 0 )
 نشر من قبل Nazma Islam Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In magnetic Cataclysmic Variables (mCVs), X-ray radiation originates from the shock heated multi-temperature plasma in the post-shock region near the white dwarf surface. These X-rays are modified by a complex distribution of absorbers in the pre-shock region. The presence of photo-ionized lines and warm absorber features in the soft X-ray spectra of these mCVs suggests that these absorbers are ionized. We developed the ionized complex absorber model zxipab, which is represented by a power-law distribution of ionized absorbers in the pre-shock flow. Using the ionized absorber model zxipab along with a cooling flow model and a reflection component, we model the broadband Chandra/HETG and NuSTAR spectra of two IPs: NY Lup and V1223 Sgr. We find that this model describes well many of the H and He like emission lines from medium Z elements, which arises from the collisionally excited plasma. However the model fails to account for some of the He like triplets from medium Z elements, which points towards its photo-ionization origin. We do not find a compelling evidence for a blackbody component to model the soft excess seen in the residuals of the Chandra/HETG spectra, which could be due to the uncertainties in estimation of the interstellar absorption of these sources using Chandra/HETG data and/or excess fluxes seen in some photo-ionized emission lines which are not accounted by the cooling flow model. We describe the implications of this model with respect to the geometry of the pre-shock region in these two IPs.



قيم البحث

اقرأ أيضاً

The hardness of the X-ray spectra of intermediate polars (IPs) is determined mainly by the white dwarf (WD) compactness (mass-radius ratio, M/R) and, thus, hard X-ray spectra can be used to constrain the WD mass. An accurate mass estimate requires th e finite size of the WD magnetosphere R_m to be taken into the account. We suggested to derive it either directly from the observed break frequency in power spectrum of X-ray or optical lightcurves of a polar, or assuming the corotation. Here we apply this method to all IPs observed by NuSTAR (10 objects) and Swift/BAT (35 objects). For the dwarf nova GK Per we also observe a change of the break frequency with flux, which allows to constrain the dependence of the magnetosphere radius on the mass-accretion rate. For our analysis we calculated an additional grid of two-parameter (M and R_m/R) model spectra assuming a fixed, tall height of the accretion column H_sh/R=0.25, which is appropriate to determine WD masses in low mass-accretion IPs like EX,Hya. Using the Gaia Data Release 2 we obtain for the first time reliable estimates of the mass-accretion rate and the magnetic field strength at the WD surface for a large fraction of objects in our sample. We find that most IPs accrete at rate of ~10^{-9} M_Sun/yr, and have magnetic fields in the range 1--10 MG. The resulting WD mass average of our sample is 0.79 +/- 0.16 M_Sun, which is consistent with earlier estimates.
We present results of the Suzaku observation of the dipping, periodically bursting low mass X-ray binary XB 1323-619 in which we concentrate of the spectral evolution in dipping in the energy range 0.8 - 70 keV. It is shown that spectral evolution in dipping is well-described by absorption on the bulge in the outer accretion disk of two continuum components: emission of the neutron star plus the dominant, extended Comptonized emission of the accretion disk corona (ADC). This model is further supported by detection of a relatively small, energy-independent decrease of flux above 20 keV due to Thomson scattering. It is shown that this is consistent with the electron scattering expected of the bulge plasma. We address the recent proposal that the dip sources may be explained by an ionized absorber model giving a number of physical arguments against this model. In particular, that model is inconsistent with the extended nature of the ADC for which the evidence is now overwhelming.
222 - P. A. Evans 2007
We make a systematic analysis of the XMM-Newton X-ray spectra of intermediate polars (IPs) and find that, contrary to the traditional picture, most show a soft blackbody component. We compare the results with those from AM Her stars and deduce that t he blackbody emission arises from reprocessing of hard X-rays, rather than from the blobby accretion sometimes seen in AM Hers. Whether an IP shows a blackbody component appears to depend primarily on geometric factors: a blackbody is not seen in those that have accretion footprints that are always obscured by accretion curtains or are only visible when foreshortened on the white-dwarf limb. Thus we argue against previous suggestions that the blackbody emission characterises a separate sub-group of IPs which are more akin to AM Hers, and develop a unified picture of the blackbody emission in these stars.
We analyze the first X-ray observations with XMM-Newton of RXS J070407.9+262501 and 1RXS 180340.0+401214, in order to characterize their broad-band temporal and spectral properties, also in the UV/optical domain, and to confirm them as Intermediate P olars. For both objects, we performed a timing analysis of the X-ray and UV/optical light curves to detect the white dwarf spin pulsations and study their energy dependence. For 1RXS 180340.0+401214 we also analyzed optical spectroscopic data to determine the orbital period. X-ray spectra were analyzed in the 0.2-10.0 keV range to characterize the emission properties of both sources. We find that the X-ray light curves of both systems are energy dependent and are dominated, below 3-5 keV, by strong pulsations at the white dwarf rotational periods (480 s for 1RXS J070407.9+262501 and 1520.5 s for 1RXS 180340.0+401214). In 1RXS 180340.0+401214 we also detect an X-ray beat variability at 1697 s which, together with our new optical spectroscopy, favours an orbital period of 4.4 hr that is longer than previously estimated. Both systems show complex spectra with a hard (up to 40 keV) optically thin and a soft (85-100 eV) optically thick components heavily absorbed by material partially covering the X-ray sources. Our observations confirm the two systems as Intermediate Polars and also add them as new members of the growing group of soft systems which show the presence of a soft X-ray blackbody component. Differences in the temperatures of the blackbodies are qualitatively explained in terms of reprocessing over different sizes of the white dwarf spot. We suggest that systems showing cooler soft X-ray blackbody components also possess white dwarfs irradiated by cyclotron radiation.
The Hitomi results on the Perseus cluster lead to improvements in our knowledge of atomic physics which are crucial for the precise diagnostic of hot astrophysical plasma observed with high-resolution X-ray spectrometers. However, modeling uncertaint ies remain, both within but especially beyond Hitomis spectral window. A major challenge in spectral modeling is the Fe-L spectrum, which is basically a complex assembly of n>2 to n=2 transitions of Fe ions in different ionization states, affected by a range of atomic processes such as collisional excitation, resonant excitation, radiative recombination, dielectronic recombination, and innershell ionization. In this paper we perform a large-scale theoretical calculation on each of the processes with the flexible atomic code (FAC), focusing on ions of Fe XVII to Fe XXIV that form the main body of the Fe-L complex. The new data are found to be consistent within 20% with the recent individual R-matrix calculations for the main Fe-L lines. By further testing the new FAC calculations with the high-quality RGS data from 15 elliptical galaxies and galaxy clusters, we note that the new model gives systematically better fits than the current SPEX v3.04 code, and the mean Fe abundance decreases by 12%, while the O/Fe ratio increases by 16% compared with the results from the current code. Comparing the FAC fit results to those with the R-matrix calculations, we find a temperature-dependent discrepancy of up to ~10% on the Fe abundance between the two theoretical models. Further dedicated tests with both observed spectra and targeted laboratory measurements are needed to resolve the discrepancies, and ultimately, to get the atomic data ready for the next high-resolution X-ray spectroscopy mission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا