ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observations of seven soft X-ray excess QSOs

81   0   0.0 ( 0 )
 نشر من قبل Kim Page
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K.L. Page




اسأل ChatGPT حول البحث

XMM-Newton observations of seven QSOs are presented and the EPIC spectra analysed. Five of the AGN show evidence for Fe K-alpha emission, with three being slightly better fitted by lines of finite width; at the 99 per cent level they are consistent with being intrinsically narrow, though. The broad-band spectra can be well modelled by a combination of different temperature blackbodies with a power-law, with temperatures between kT ~ 100-300 eV. On the whole, these temperatures are too high to be direct thermal emission from the accretion disc, so a Comptonization model was used as a more physical parametrization. The Comptonizing electron population forms the soft excess emission, with an electron temperature of ~ 120-680 eV. Power-law, thermal plasma and disc blackbody models were also fitted to the soft X-ray excess. Of the sample, four of the AGN are radio-quiet and three radio-loud. The radio-quiet QSOs may have slightly stronger soft excesses, although the electron temperatures cover the same range for both groups.



قيم البحث

اقرأ أيضاً

Context. On the basis of XMM-Newton observations, we investigate the energy balance of selected magnetic cataclysmic variables, which have shown an extreme soft-to-hard X-ray flux ratio in the ROSAT All-Sky Survey. Aims. We intend to establish the X-ray properties of the system components, their flux contributions, and the accretion geometry of the X-ray soft polar QS Tel. In the context of high-resolution X-ray analyses of magnetic cataclysmic variables, this study will contribute to better understanding the accretion processes on magnetic white dwarfs. Methods. During an intermediate high state of accretion of QS Tel, we have obtained 20 ks of XMM-Newton data, corresponding to more than two orbital periods, accompanied by simultaneous optical photometry and phase-resolved spectroscopy. We analyze the multi-wavelength spectra and light curves and compare them to former high- and low-state observations. Results. Soft emission at energies below 2 keV dominates the X-ray light curves. The complex double-peaked maxima are disrupted by a sharp dip in the very soft energy range (0.1-0.5 keV), where the count rate abruptly drops to zero. The EPIC spectra are described by a minimally absorbed black body at 20 eV and two partially absorbed MEKAL plasma models with temperatures around 0.2 and 3 keV. The black-body-like component arises from one mainly active, soft X-ray bright accretion region nearly facing the mass donor. Parts of the plasma emission might be attributed to the second, virtually inactive pole. High soft-to-hard X-ray flux ratios and hardness ratios demonstrate that the high-energy emission of QS Tel is substantially dominated by its X-ray soft component.
80 - K.L. Page 2004
XMM Newton observations of five high-luminosity radio-quiet QSOs (Q 0144-3938, UM 269, PG 1634+706, SBS 0909+532 and PG 1247+267) are presented. Spectral energy distributions were calculated from the XMM-Newton EPIC (European Photon Imaging Camera) a nd OM (Optical Monitor) data, with bolometric luminosities estimated in the range from 7 x 10^45 to 2 x 10^48 erg s^-1 for the sample, peaking in the UV. At least four of the QSOs show a similar soft excess, which can be well modelled by either one or two blackbody components, in addition to the hard X-ray power-law. The temperatures of these blackbodies (~100-500 eV) are too high to be direct thermal emission from the accretion disc, so Comptonization is suggested. Two populations of Comptonizing electrons, with different temperatures, are needed to model the broad-band spectrum. The hotter of these produces what is seen as the hard X-ray power-law, while the cooler (~0.25-0.5 keV) population models the spectral curvature at low energies. Only one of the QSOs shows evidence for an absorption component, while three of the five show neutral iron emission. Of these, PG 1247+267 seems to have a broad line (EW ~ 250 eV), with a strong, associated reflection component (R ~ 2), measured out to 30 keV in the rest frame of the QSO. Finally, it is concluded that the X-ray continuum shape of AGN remains essentially constant over a wide range of black hole mass and luminosity.
207 - M. Galeazzi , A. Gupta , K. Covey 2006
We analyzed two XMM-Newton observations in the direction of the high density, high latitude, neutral hydrogen cloud MBM20 and of a nearby low density region that we called the Eridanus hole. The cloud MBM20 is at a distance evaluated between 100 and 200 pc from the Sun and its density is sufficiently high to shield about 75% of the foreground emission in the 3/4 keV energy band.The combination of the two observations makes possible an evaluation of the OVII and OVIII emission both for the foreground component due to the Local Bubble,and the background one, due primary to the galactic halo.The two observations are in good agreement with each other and with ROSAT observations of the same part of the sky and the OVII and OVIII fluxes are OVII=3.89+/-0.56 photons cm^-2 s^-1 sr^-1, OVIII=0.68+/-0.24 photons cm^-2 s^-1 sr^-1 for MBM20 and OVII=7.26+/-0.34 photons cm^-2 s^-1 sr^-1,OVIII=1.63+/-0.17 photons cm^-2 s^-1 sr^-1 for the Eridanus hole. The spectra are in agreement with a simple three component model, one unabsorbed and one absorbed plasma component, and a power law, without evidence for any strong contamination from ion exchange in the solar system. Assuming that the two plasma components are in thermal equilibrium we obtain a temperature of 0.096 keV for the foreground component and 0.197 keV for the background one. Assuming the foreground component is due solely to Local Bubble emission we obtain a lower and upper limit for the plasma density of 0.0079 cm^-3 and 0.0095 cm^-3 and limits of 16,200 cm^-3 K and 19,500 cm^-3 K for the plasma pressure, in good agreement with theoretical predictions. Similarly, assuming that the absorbed plasma component is due to Galactic halo emission, we obtain a plasma density ranging from 0.0009 cm^-3 to 0.0016 cm^-3, and a pressure ranging from 3.0*10^3 to 6.7*10^3 cm^-3 K.
We present the results of two XMM-Newton observations of Jupiter carried out in 2003 for 100 and 250 ks (or 3 and 7 planet rotations) respectively. X-ray images from the EPIC CCD cameras show prominent emission from the auroral regions in the 0.2 - 2 .0 keV band: the spectra are well modelled by a combination of emission lines, including most prominently those of highly ionised oxygen (OVII and OVIII). In addition, and for the first time, XMM-Newton reveals the presence in both aurorae of a higher energy component (3 - 7 keV) which is well described by an electron bremsstrahlung spectrum. This component is found to be variable in flux and spectral shape during the Nov. 2003 observation, which corresponded to an extended period of intense solar activity. Emission from the equatorial regions of Jupiters disk is also observed, with a spectrum consistent with that of solar X-rays scattered in the planets upper atmosphere. Jupiters X-rays are spectrally resolved with the RGS which clearly separates the prominent OVII contribution of the aurorae from the OVIII, FeXVII and MgXI lines, originating in the low-latitude disk regions of the planet.
269 - A. Kinkhabwala , M. Sako (1 , 2 2002
We present the first high-resolution, soft-X-ray spectrum of the prototypical Seyfert 2 galaxy, NGC 1068. This spectrum was obtained with the XMM-Newton Reflection Grating Spectrometer. Emission lines from H-like and He-like low-Z ions (from C to Si) and Fe-L-shell ions dominate the spectrum. Strong, narrow radiative recombination continua (RRC) for several ions are also present, implying that most of the observed soft-X-ray emission arises in low-temperature (few eV) plasma. This plasma is photoionized by the inferred nuclear continuum (obscured along our line of sight), as in the unified model of active galactic nuclei (AGN). We find excess emission (compared with pure recombination) in all resonance lines (np to 1s) up to the photoelectric edge, demonstrating the importance of photoexcitation as well. We introduce a simple model of a cone of plasma irradiated by the nuclear continuum; the line emission we observe along our line of sight perpendicular to the cone is produced through recombination/radiative cascade following photoionization and radiative decay following photoexcitation. A remarkably good fit is obtained to the H-like/He-like ionic line series, with inferred radial ionic column densities consistent with recent observations of warm absorbers in Seyfert 1 galaxies. Previous Chandra imaging revealed a large (extending out to 500 pc) ionization cone containing most of the X-ray flux, implying that the warm absorber in NGC 1068 is a large-scale outflow. To explain the ionic column densities, a broad, flat distribution in the logarithm of the ionization parameter ($xi=L_X/n_e r^2$) is necessary, spanning $logxi=0$--3. This suggests either radially-stratified ionization zones or the existence of a broad density distribution (spanning a few orders of magnitude) at each radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا