ﻻ يوجد ملخص باللغة العربية
We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of O main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on non-LTE line blanketed atmosphere models with stellar winds calculated using the CMFGEN code of Hillier & Miller (1998). We draw the following conclusions. First, we find that the total number of Lyman photons emitted is almost independent of line blanketing effects and metallicity for a given effective temperature. This is because the flux that is blocked by the forest of metal lines at wavelengths shorter than 600 Angstrom is redistributed mainly within the Lyman continuum. Second, the spectral type, as defined by the ratio of the equivalent widths of HeI 4471 Angstrom and HeII 4542 Angstrom, is shown to depend noticeably on the microturbulent velocity in the atmosphere, on metallicity and, within the luminosity class of dwarfs, on gravity. Third, we confirm the decrease in the effective temperature for a given spectral type due to the inclusion of line blanketing recently found by e.g. Martins et al. (2002). Finally, we find that the SED below ~450 Angstrom is highly dependent on metallicity. This is reflected in the behaviour of nebular fine-structure line ratios such as [NeIII]/[NeII] 15.5/12.8 and [ArIII]/[ArII] 9.0/7.0 micron. This dependence complicates the use of these nebular ratios as diagnostic tools for the effective temperature determination of the ionizing stars in HII regions and for age dating of starburst regions in galaxies.
The recent catalog of spectral types of Galactic O-type stars by Maiz-Apellaniz et al. has been used to study the differences between the frequencies of various subtypes of O-type stars in the field, in OB associations and among runaway stars. At a h
We highlight differences in spectral types and intrinsic colors observed in pre-main sequence (pre-MS) stars. Spectral types of pre-MS stars are wavelength-dependent, with near-infrared spectra being 3-5 spectral sub-classes later than the spectral t
We have investigated the relevant trend of the bolometric correction (BC) at the cool-temperature regime of red giant stars and its possible dependence on stellar metallicity. Our analysis relies on a wide sample of optical-infrared spectroscopic obs
We present results of modelling the bulk of the spectral energy distribution (0.35 - 5 micron) for GJ406 (M6V). Synthetic spectra were calculated using the NextGen, Dusty and Cond model atmospheres and incorporate line lists for H2O, TiO, CrH, FeH, C
In the line-of-sight toward the DO-type white dwarf RX J0503.9-2854, the density of the interstellar medium (ISM) is very low, and thus the contamination of the stellar spectrum almost negligible. This allows us to identify many metal lines in a wide