ﻻ يوجد ملخص باللغة العربية
We present results of modelling the bulk of the spectral energy distribution (0.35 - 5 micron) for GJ406 (M6V). Synthetic spectra were calculated using the NextGen, Dusty and Cond model atmospheres and incorporate line lists for H2O, TiO, CrH, FeH, CO, MgH molecules as well as the VALD line list of atomic lines. A comparison of synthetic and observed spectra gives Tef = 2800 +/- 100 K. We determine M$_bol = 12.13 +/- 0.10 for which evolutionary models by Baraffe et al. (2003) suggest an age of around 0.1 -- 0.35 Gyr consistent with its high activity. The age and luminosity of GJ406 correspond to a wide range of plausible masses (0.07 -- 0.1 Msun).
The small grain sizes produced by Type II supernova (SN II) models in young, metal-poor galaxies make the appearance of their infrared (IR) spectral energy distribution (SED) quite different from that of nearby, older galaxies. To study this effect,
Spectral properties of super-Eddington accretion flows are investigated by means of a parallel line-of-sight calculation. The subjacent model, taken from two-dimensional radiation hydrodynamic simulations by Ohsuga et al. (2005), consists of a disc a
(Abridged) We have conducted a detailed investigation of the broad-band spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio,
The relationship between star formation and super-massive black hole growth is central to our understanding of galaxy formation and evolution. Hyper-Luminous Infrared Galaxies (HLIRGs) are unique laboratories to investigate the connection between sta
We present a multiwavelength study of the black hole X-ray binary V404 Cyg in quiescence, focusing upon the spectral energy distribution (SED). Radio, optical, UV, and X-ray coverage is simultaneous. We supplement the SED with additional non-simultan