ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral energy distribution for GJ406

413   0   0.0 ( 0 )
 نشر من قبل Yakiv Pavlenko V.
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ya. V. Pavlenko




اسأل ChatGPT حول البحث

We present results of modelling the bulk of the spectral energy distribution (0.35 - 5 micron) for GJ406 (M6V). Synthetic spectra were calculated using the NextGen, Dusty and Cond model atmospheres and incorporate line lists for H2O, TiO, CrH, FeH, CO, MgH molecules as well as the VALD line list of atomic lines. A comparison of synthetic and observed spectra gives Tef = 2800 +/- 100 K. We determine M$_bol = 12.13 +/- 0.10 for which evolutionary models by Baraffe et al. (2003) suggest an age of around 0.1 -- 0.35 Gyr consistent with its high activity. The age and luminosity of GJ406 correspond to a wide range of plausible masses (0.07 -- 0.1 Msun).



قيم البحث

اقرأ أيضاً

The small grain sizes produced by Type II supernova (SN II) models in young, metal-poor galaxies make the appearance of their infrared (IR) spectral energy distribution (SED) quite different from that of nearby, older galaxies. To study this effect, we have developed a model for the evolution of dust content and the IR SED of low-metallicity, extremely young galaxies based on Hirashita et al. (2002). We find that, even in the intense ultraviolet (UV) radiation field of very young galaxies, small silicate grains are subject to stochastic heating resulting in a broad temperature distribution and substantial MIR continuum emission. Larger carbonaceous grains are in thermal equilibrium at T simeq 50 - 100K, and they also contribute to the MIR. We present the evolution of SEDs and IR extinction of very young, low-metallicity galaxies. The IR extinction curve is also shown. In the first few Myrs, the emission peaks at lambda sim 30-50um at later times dust self-absorption decreases the apparent grain temperatures, shifting the bulk of the emission into the submillimetre band. We successfully apply the model to the IR SED of a low metallicity (1/41 Z_odot) dwarf galaxy SBS0335-052. We find the SED, optical properties and extinction of the star forming region to be consistent with a very young and compact starburst. We also predict the SED of another extremely low-metallicity galaxy, I Zw 18, for future observational tests. Some prospects for future observations are discussed.
246 - D. Heinzeller 2006
Spectral properties of super-Eddington accretion flows are investigated by means of a parallel line-of-sight calculation. The subjacent model, taken from two-dimensional radiation hydrodynamic simulations by Ohsuga et al. (2005), consists of a disc a ccretion region and an extended atmosphere with high velocity outflows. The non-gray radiative transfer equation is solved, including relativistic effects, by applying the FLD approximation. The calculated spectrum is composed of a thermal, blackbody-like emission from the disc which depends sensitively on the inclination angle, and of high energy X-ray and gamma-ray emission from the atmosphere. We find mild beaming effects in the thermal radiation for small inclination angles. If we compare the face-on case with the edge-on case, the average photon energy is larger by a factor of ~1.7 due mainly to Doppler boosting, while the photon number density is larger by a factor of ~3.7 due mainly to anisotropic matter distribution around the central black hole. This gives an explanation for the observed X-ray temperatures of ULXs which are too high to be explained in the framework of intermediate-mass black holes. While the main features of the thermal spectral component are consistent with more detailed calculations of slim accretion discs, the atmosphere induces major changes in the high-energy part, which cannot be reproduced by existing models. In order to interpret observational data properly, simple approaches like the Eddington-Barbier approximation cannot be applied.
(Abridged) We have conducted a detailed investigation of the broad-band spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray data, collected within three months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous Spectral Energy Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual Log $ u $ - Log $ u$ F$_ u$ representation, the typical broad-band spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SEDs to characterize the peak intensity of both the low and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broad-band colors (i.e. the radio to optical and optical to X-ray spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency $ u_p^S$ is positioned between 10$^{12.5}$ and 10$^{14.5}$ Hz in broad-lined FSRQs and between $10^{13}$ and $10^{17}$ Hz in featureless BL Lacertae objects.We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron - inverse Compton scenarios. However, simple homogeneous, one-zone, Synchrotron Self Compton (SSC) models cannot explain most of our SEDs, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. (...)
122 - A. Ruiz 2010
The relationship between star formation and super-massive black hole growth is central to our understanding of galaxy formation and evolution. Hyper-Luminous Infrared Galaxies (HLIRGs) are unique laboratories to investigate the connection between sta rburst (SB) and Active Galactic Nuclei (AGN), since they exhibit extreme star formation rates, and most of them show evidence of harbouring powerful AGN. Our previous X-ray study of a sample of 14 HLIRGs shows that the X-ray emission of most HLIRGs is dominated by AGN activity. To improve our estimate of the relative contribution of the AGN and SB emission to its total bolometric output, we have built broad band spectral energy distributions (SEDs) for these HLIRGs, and we have fitted empirical AGN and SB templates to these SEDs. In broad terms, most sources are well fitted using this method, and we found AGN and SB contributions similar to those obtained by previous studies of HLIRGs. We have classified the HLIRGs SEDs in two groups, named class A and class B. Class A HLIRGs show a flat SED from the optical to the infrared energy range. Three out of seven class A sources can be modelled with a pure luminosity-dependent QSO template, while the rest of them require a type 1 AGN template and a SB template. The SB component is dominant in three out of four class A objects. Class B HLIRGs show SEDs with a prominent and broad IR bump. These sources can not trivially be modelled with a combination of pure AGN and pure SB, they require templates of composite objects, suggesting that >50% of their emission comes from stellar formation processes. We propose that our sample is actually composed by three different populations: very luminous QSO, young galaxies going through their maximal star formation period and the high luminosity tail of ULIRG population distribution.
111 - R.I. Hynes 2009
We present a multiwavelength study of the black hole X-ray binary V404 Cyg in quiescence, focusing upon the spectral energy distribution (SED). Radio, optical, UV, and X-ray coverage is simultaneous. We supplement the SED with additional non-simultan eous data in the optical through infrared where necessary. The compiled SED is the most complete available for this, the X-ray and radio brightest quiescent black hole system. We find no need for a substantial contribution from accretion light from the near-UV to the near-IR, and in particular the weak UV emission constrains published spectral models for V404 Cyg. We confirm that no plausible companion spectrum and interstellar extinction can fully explain the mid-IR, however, and an IR excess from a jet or cool disc appears to be required. The X-ray spectrum is consistent with a Gamma~2 power-law as found by all other studies to date. There is no evidence for any variation in the hardness over a range of a factor of 10 in luminosity. The radio flux is consistent with a flat spectrum (in f(nu)). The break frequency between a flat and optically thin spectrum most likely occurs in the mid or far-IR, but is not strongly constrained by these data. We find the radio to be substantially variable but with no clear correlation with X-ray variability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا