ترغب بنشر مسار تعليمي؟ اضغط هنا

BeppoSAX observations of the accretion-powered X-ray pulsar SMC X-1

88   0   0.0 ( 0 )
 نشر من قبل Sachindra Naik
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here results obtained from three BeppoSAX observations of the accretion-powered X-ray pulsar SMC X-1 carried out during the declining phases of its 40--60 days long super-orbital period. Timing analysis of the data clearly shows a continuing spin-up of the neutron star. Energy-resolved timing analysis shows that the pulse-profile of SMC X-1 is single peaked at energies less than 1.0 keV whereas an additional peak, the amplitude of which increases with energy within the MECS range, is present at higher energies. Broad-band pulse-phase-averaged spectroscopy of the BeppoSAX data, which is done for the first time since its discovery, shows that the energy spectrum in the 0.1--80 keV energy band has three components, a soft excess that can be modeled as a thermal black-body, a hard power-law component with a high-energy exponential cutoff and a narrow and weak iron emission line at 6.4 keV. Pulse-phase resolved spectroscopy indicates a pulsating nature of the soft spectral component, as seen in a few other binary X-ray pulsars, with a certain phase offset with respect to the hard power-law component. Dissimilar shape and phase of the soft and hard X-ray pulse profiles suggest a different origin of the soft and hard components.



قيم البحث

اقرأ أيضاً

184 - M. Orlandini 1997
We report on the spectral (pulse averaged) and timing analysis of the ~ 20 ksec observation of the X-ray binary pulsar Vela X-1 performed during the BeppoSAX Science Verification Phase. The source was observed in two different intensity states: the l ow state is probably due to an erratic intensity dip and shows a decrease of a factor ~ 2 in intensity, and a factor 10 in Nh. We have not been able to fit the 2-100 keV continuum spectrum with the standard (for an X--ray pulsar) power law modified by a high energy cutoff because of the flattening of the spectrum in ~ 10-30 keV. The timing analysis confirms previous results: the pulse profile changes from a five-peak structure for energies less than 15 keV, to a simpler two-peak shape at higher energies. The Fourier analysis shows a very complex harmonic component: up to 23 harmonics are clearly visible in the power spectrum, with a dominant first harmonic for low energy data, and a second one as the more prominent for energies greater than 15 keV. The aperiodic component in the Vela X-1 power spectrum presents a knee at about 1 Hz. The pulse period, corrected for binary motion, is 283.206 +/- 0.001 sec.
We present results obtained from a Suzaku observation of the accretion powered X-ray pulsar GX 1+4. Broad-band continuum spectrum of the pulsar was found to be better described by a simple model consisting of a blackbody component and an exponential cutoff power-law than the previously used compTT continuum model. Though the pulse profile had a sharp dip in soft X-rays ($<$10 keV), phase-resolved spectroscopy confirmed that the dimming was not due to increase in photoelectric absorption. Phase-sliced spectral analysis showed the presence of a significant spectral modulation beyond 10 keV except for the dip phase. A search for the presence of cyclotron resonance scattering feature in the Suzaku spectra yielded a negative result. Iron K-shell (K$_alpha$ and K$_beta$) emission lines from nearly neutral iron ions ($<$Fe III) were clearly detected in the source spectrum. A significant K$_alpha$ emission line from almost neutral Ni atoms was detected for the first time in this source. We estimated the iron abundance of $sim$80 % of the solar value and Ni/Fe abundance ratio of about two times of the solar value. We searched for a iron Ly$_alpha$ emission line and found a significant improvement in the spectral fitting by inclusion of this line.
130 - D.K. Galloway 2005
We report on observations of the sixth accretion-powered millisecond pulsar, IGR J00291+5934, with the Rossi X-Ray Timing Explorer. The source is a faint, recurrent X-ray transient initially identified by INTEGRAL. The 599 Hz (1.67 ms) pulsation had a fractional rms amplitude of 8% in the 2-20 keV range, and its shape was approximately sinusoidal. The pulses show an energy-dependent phase delay, with the 6-9 keV pulses arriving up to 85 us earlier than those at lower energies. No X-ray bursts, dips, or eclipses were detected. The neutron star is in a circular 2.46 hr orbit with a very low-mass donor, most likely a brown dwarf. The binary parameters of the system are similar to those of the first known accreting millisecond pulsar, SAX J1808.4-3658. Assuming that the mass transfer is driven by gravitational radiation and that the 2004 outburst fluence is typical, the 3-yr recurrence time implies a distance of at least 4 kpc.
113 - K. L. Li , C.-P Hu , L. C. C. Lin 2016
We report the Chandra/HRC-S and Swift/XRT observations for the 2015 outburst of the high-mass X-ray binary (HMXB) pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the h igh-mass companion of SMC X-2, our Chandra/HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift/XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals (TOAs) analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipses or an ionized high-density shadow wind near the companions surface. Finally, we propose that an outflow driven by the radiation pressure from day ~10 played an important role in the X-ray/optical evolution of the outburst.
The accretion-induced pulse-period changes of the Be/X-ray binary pulsar X Persei were investigated over a period of 1996 January to 2017 September. This study utilized the monitoring data acquired with the RXTE/ASM in 1.5$-$12 keV and MAXI/GSC in 2$ -$20 keV. The source intensity changed by a factor of 5$-$6 over this period. The pulsar was spinning down for 1996$-$2003, and has been spinning up since 2003, as already reported. The spin up/down rate and the 3$-$12 keV flux, determined every 250 d, showed a clear negative correlation, which can be successfully explained by the accretion torque model proposed by Ghosh & Lamb (1979). When the mass, radius and distance of the neutron star are allowed to vary over a range of 1.0$-$2.4 solar masses, 9.5$-$15 km, and 0.77$-$0.85 kpc, respectively, the magnetic field strength of $B=(4-25) times10^{13} rm G$ gave the best fits to the observation. In contrast, the observed results cannot be explained by the values of $Bsim10^{12} rm G$ previously suggested for X Persei, as long as the mass, radius, and distance are required to take reasonable values. Assuming a distance of $0.81pm0.04$ kpc as indicated by optical astrometry, the mass of the neutron star is estimated as $M=2.03pm0.17$ solar masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا