ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of the accretion-powered millisecond X-ray pulsar IGR J00291+5934

131   0   0.0 ( 0 )
 نشر من قبل Duncan K. Galloway
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D.K. Galloway




اسأل ChatGPT حول البحث

We report on observations of the sixth accretion-powered millisecond pulsar, IGR J00291+5934, with the Rossi X-Ray Timing Explorer. The source is a faint, recurrent X-ray transient initially identified by INTEGRAL. The 599 Hz (1.67 ms) pulsation had a fractional rms amplitude of 8% in the 2-20 keV range, and its shape was approximately sinusoidal. The pulses show an energy-dependent phase delay, with the 6-9 keV pulses arriving up to 85 us earlier than those at lower energies. No X-ray bursts, dips, or eclipses were detected. The neutron star is in a circular 2.46 hr orbit with a very low-mass donor, most likely a brown dwarf. The binary parameters of the system are similar to those of the first known accreting millisecond pulsar, SAX J1808.4-3658. Assuming that the mass transfer is driven by gravitational radiation and that the 2004 outburst fluence is typical, the 3-yr recurrence time implies a distance of at least 4 kpc.

قيم البحث

اقرأ أيضاً

IGR J00291+5934 is the fastest-known accretion-powered X-ray pulsar, discovered during a transient outburst in 2004. In this paper, we report on Integral and Swift observations during the 2015 outburst, which lasts for $sim25$ d. The source has not b een observed in outburst since 2008, suggesting that the long-term accretion rate has decreased by a factor of two since discovery. The averaged broad-band (0.1 - 250 keV) persistent spectrum in 2015 is well described by a thermal Comptonization model with a column density of $N_{rm H} approx4times10^{21}$ cm$^{-2}$, a plasma temperature of $kT_{rm e} approx50$ keV, and a Thomson optical depth of $tau_{rm T}approx1$. Pulsations at the known spin period of the source are detected in the Integral data up to the $sim150$ keV energy band. We also report on the discovery of the first thermonuclear burst observed from IGR J00291+5934, which lasts around 7 min and occurs at a persistent emission level corresponding to roughly $1.6%$ of the Eddington accretion rate. The properties of the burst suggest it is powered primarily by helium ignited at a depth of $y_{rm ign}approx1.5times10^9$ g cm$^{-2}$ following the exhaustion by steady burning of the accreted hydrogen. The Swift/BAT data from the first $sim20$ s of the burst provide indications of a photospheric radius expansion phase. Assuming this is the case, we infer a source distance of $d = 4.2 pm 0.3$ kpc.
We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4m Gran Telescopio Canarias (GTC) in August 2014. Despite the source being in quiescence at the time of our observatio ns, it showed a strong optical flaring activity, more pronounced at higher frequencies (i.e. the g band). Once the flares were subtracted, we tentatively recovered a sinusoidal modulation at the system orbital period in all bands, even if a significant phase shift with respect to an irradiated star, typical of accreting millisecond X-ray pulsars is detected. We conclude that the observed flaring could be a manifestation of the presence of an accretion disc in the system. The observed light curve variability could be explained by the presence of a superhump, which might be another proof of the formation of an accretion disc. In particular, the disc at the time of our observations was probably preparing to the new outburst of the source, that happened just a few months later, in 2015.
We report on optical and NIR observations obtained during and after the 2004 December discovery outburst of the X-ray transient and accretion-powered millisecond pulsar IGR J00291+5934. Our observations monitored the evolution of the brightness and t he spectral properties of J00291 during the outburst decay towards quiescence. We also present optical, NIR and Chandra observations obtained during true quiescence. Photometry of the field during outburst reveals an optical and NIR counterpart that brightened from R~23 to R~17 and from K=19 to K~16. Spectral analysis of the RIJHK broadband photometry shows excess in the NIR bands that may be due to synchrotron emission. The Halpha emission line profile suggests the orbital inclination is ~22-32 degrees. The preferred range for the reddening towards the source is 0.7 < E(B-V) < 0.9, which is equivalent to 4.06E21 cm^-2 < NH < 5.22E21 cm^-2. The Chandra observations of the pulsar in its quiescent state gave an unabsorbed 0.5-10 keV flux for the best-fitting power-law model to the source spectrum of (7.0 +/- 0.9)E-14 ergs/cm^2/s (adopting a hydrogen column of 4.6E21 cm^-2. The fit resulted in a power-law photon index of 2.4 +/- 0.5. The (R-K)o color observed during quiescence supports an irradiated donor star and accretion disk. We estimate a distance of 2 to 4 kpc towards J00291 by using the outburst X-ray light curve and the estimated critical X-ray luminosity necessary to keep the outer parts of the accretion disk ionized. Using the quiescent X-ray luminosity and the spin period, we constrain the magnetic field of the neutron star to be < 3E8 Gauss.
Neutron Stars are among the most exotic objects in the Universe. A neutron star, with a mass of 1.4-2 Solar masses within a radius of about 10-15 km, is the most compact stable configuration of matter in which degeneracy pressure can still balance gr avity, since further compression would lead to gravitational collapse and formation of a black hole. As gravity is extreme, rotation is extreme: neutron stars are the fastest rotating stars known, with periods as short as a millisecond. The presence of a magnetic field not aligned with the rotation axis of the star is the origin of pulsating emission from these sources, which for this reason are dubbed pulsars. The discovery in 1998 of the first Accreting Millisecond X-ray Pulsar, started an exciting season of continuing discoveries. In the last 20 years, thanks to the extraordinary performance of astronomical detectors in the radio, optical, X-ray, and Gamma-ray bands, astrophysicists had the opportunity to thoroughly investigate the so-called Recycling Scenario: the evolutionary path leading to the formation of a Millisecond-spinning Pulsar. In this chapter we review the general properties of Accreting Millisecond X-ray Pulsars, which provide the first evidence that neutron stars are spun up to millisecond periods by accretion of matter and angular momentum from a (low-mass) companion star. We describe the general characteristics of this class of systems with particular attention to their spin and orbital parameters, their short-term and long-term evolution, as well as the information that can be drawn from their X-ray spectra.
The accretion-powered millisecond pulsar IGR J00291+5934 underwent two ~10 d long outbursts during 2008, separated by 30 d in quiescence. Such a short quiescent period between outbursts has never been seen before from a neutron star X-ray transient. X-ray pulsations at the 599 Hz spin frequency are detected throughout both outbursts. For the first time, we derive a pulse phase model that connects two outbursts, providing a long baseline for spin frequency measurement. Comparison with the frequency measured during the 2004 outburst of this source gives a spin-down during quiescence of -4(1)x10^-15 Hz/s, approximately an order of magnitude larger than the long-term spin-down observed in the 401 Hz accretion-powered pulsar SAX J1808.4-3658. If this spin-down is due to magnetic dipole radiation, it requires a 2x10^8 G field strength, and its high spin-down luminosity may be detectable with the Fermi Large Area Telescope. Alternatively, this large spin-down could be produced by gravitational wave emission from a fractional mass quadrupole moment of Q/I = 1x10^{-9}. The rapid succession of the outbursts also provides a unique test of models for accretion in low-mass X-ray binaries. Disk instability models generally predict that an outburst will leave the accretion disk too depleted to fuel a second outburst after such a brief quiescence. We suggest a modification in which the outburst is shut off by the onset of a propeller effect before the disk is depleted. This model can explain the short quiescence and the unusually slow rise of the light curve of the second 2008 outburst.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا