ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing cosmological parameters with GRBs

39   0   0.0 ( 0 )
 نشر من قبل Tristano Di Girolamo
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In light of the recent finding of the narrow clustering of the geometrically-corrected gamma-ray energies emitted by Gamma Ray Bursts (GRBs), we investigate the possibility to use these sources as standard candles to probe cosmological parameters such as the matter density Omega_m and the cosmological constant energy density Omega_Lambda. By simulating different samples of gamma-ray bursts, based on recent observational results, we find that Omega_m (with the prior Omega_m + Omega_Lambda = 1) can be determined with accuracy ~7% with data from 300 GRBs, provided a local calibration of the standard candles be achieved.


قيم البحث

اقرأ أيضاً

In this paper we study the sensitivity of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) project to the determination of cosmological parameters, employing the Monte Carlo Markov Chains (MCMC) method. For comparison, we first analyze the constraints on cosmological parameters from current observational data, including WMAP, SDSS and SN Ia. We then simulate the 3D matter power spectrum data expected from LAMOST, together with the simulated CMB data for PLANCK and the SN Ia from 5-year Supernovae Legacy Survey (SNLS). With the simulated data, we investigate the future improvement on cosmological parameter constraints, emphasizing the role of LAMOST. Our results show the potential of LAMOST in probing for the cosmological parameters, especially in constraining the equation-of-state (EoS) of the dark energy and the neutrino mass.
Recent measurements of the cosmic microwave background radiation (CMB), particularly when combined with other datasets, have revolutionised our knowledge of the values of the basic cosmological parameters. Here we summarize the state of play at the e nd of 2006, focusing on the combination of CMB measurements with the power spectrum of galaxy clustering. We compare the constraints derived from the extant CMB data circa 2005 and the final 2dFGRS galaxy power spectrum, with the results obtained when the WMAP 1-year data is replaced by the 3-year measurements (hereafter WMAP1 and WMAP3). Remarkably, the picture has changed relatively little with the arrival of WMAP3, though some aspects have been brought into much sharper focus. One notable example of this is the index of primordial scalar fluctuations, n_s. Prior to WMAP3, Sanchez et al. (2006) found that the scale invariant value of n_s = 1 was excluded at the 95% level. With WMAP3, this becomes a 3sigma result, with implications for models of inflation. We find some disagreement between the constraints on certain parameters when the 2dFGRS P(k) is replaced by the SDSS measurement. This suggests that more work is needed to understand the relation between the clustering of different types of galaxies and the linear perturbation theory prediction for the power spectrum of matter fluctuations.
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESAs fifth call for med ium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume LCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base LCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. (ABRIDGED)
54 - S. Savaglio 2006
Long-duration gamma-ray bursts (GRBs) are associated with the death of metal-poor massive stars. Even though they are highly transient events very hard to localize, they are so bright that they can be detected in the most difficult environments. GRB observations are unveiling a surprising view of the chemical state of the distant universe (redshifts z > 2). Contrary to what is expected for a high-z metal-poor star, the neutral interstellar medium (ISM) around GRBs is not metal poor (metallicities vary from ~1/10 solar at z = 6.3 to about solar at z = 2) and is enriched with dust (90-99% of iron is in solid form). If these metallicities are combined with those measured in the warm ISM of GRB host galaxies at z < 1, a redshift evolution is observed. Such an evolution predicts that the stellar masses of the hosts are in the range M* = 10^(8.6-9.8) Msun. This prediction makes use of the mass-metallicity relation (and its redshift evolution) observed in normal star-forming galaxies. Independent measurements coming from the optical-NIR photometry of GRB hosts indicate the same range of stellar masses, with a typical value similar to that of the Large Magellanic Cloud. This newly detected population of intermediate-mass galaxies is very hard to find at high redshift using conventional astronomy. However, it offers a compelling and relatively inexpensive opportunity to explore galaxy formation and cosmic chemical evolution beyond known borders, from the primordial universe to the present.
111 - Martin Kilbinger 2018
In this manuscript of the habilitation `a diriger des recherches (HDR), the author presents some of his work over the last ten years. The main topic of this thesis is cosmic shear, the distortion of images of distant galaxies due to weak gravitationa l lensing by the large-scale structure in the Universe. Cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. I review the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then I give an overview of weak-lensing measurements, and present observational results from the Canada-France Hawaii Lensing Survey (CFHTLenS), as well as the implications for cosmology. I conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا