ترغب بنشر مسار تعليمي؟ اضغط هنا

GRBs as Cosmological Probes - Cosmic Chemical Evolution

55   0   0.0 ( 0 )
 نشر من قبل Sandra Savaglio
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Savaglio




اسأل ChatGPT حول البحث

Long-duration gamma-ray bursts (GRBs) are associated with the death of metal-poor massive stars. Even though they are highly transient events very hard to localize, they are so bright that they can be detected in the most difficult environments. GRB observations are unveiling a surprising view of the chemical state of the distant universe (redshifts z > 2). Contrary to what is expected for a high-z metal-poor star, the neutral interstellar medium (ISM) around GRBs is not metal poor (metallicities vary from ~1/10 solar at z = 6.3 to about solar at z = 2) and is enriched with dust (90-99% of iron is in solid form). If these metallicities are combined with those measured in the warm ISM of GRB host galaxies at z < 1, a redshift evolution is observed. Such an evolution predicts that the stellar masses of the hosts are in the range M* = 10^(8.6-9.8) Msun. This prediction makes use of the mass-metallicity relation (and its redshift evolution) observed in normal star-forming galaxies. Independent measurements coming from the optical-NIR photometry of GRB hosts indicate the same range of stellar masses, with a typical value similar to that of the Large Magellanic Cloud. This newly detected population of intermediate-mass galaxies is very hard to find at high redshift using conventional astronomy. However, it offers a compelling and relatively inexpensive opportunity to explore galaxy formation and cosmic chemical evolution beyond known borders, from the primordial universe to the present.


قيم البحث

اقرأ أيضاً

Context: The cosmological concordance model ($Lambda$CDM) matches the cosmological observations exceedingly well. This model has become the standard cosmological model with the evidence for an accelerated expansion provided by the type Ia supernovae (SNIa) Hubble diagram. However, the robustness of this evidence has been addressed recently with somewhat diverging conclusions. Aims: The purpose of this paper is to assess the robustness of the conclusion that the Universe is indeed accelerating if we rely only on low-redshift (z$lesssim$2) observations, that is to say with SNIa, baryonic acoustic oscillations, measurements of the Hubble parameter at different redshifts, and measurements of the growth of matter perturbations. Methods: We used the standard statistical procedure of minimizing the $chi^2$ function for the different probes to quantify the goodness of fit of a model for both $Lambda$CDM and a simple nonaccelerated low-redshift power law model. In this analysis, we do not assume that supernovae intrinsic luminosity is independent of the redshift, which has been a fundamental assumption in most previous studies that cannot be tested. Results: We have found that, when SNIa intrinsic luminosity is not assumed to be redshift independent, a nonaccelerated low-redshift power law model is able to fit the low-redshift background data as well as, or even slightly better, than $Lambda$CDM. When measurements of the growth of structures are added, a nonaccelerated low-redshift power law model still provides an excellent fit to the data for all the luminosity evolution models considered. Conclusions: Without the standard assumption that supernovae intrinsic luminosity is independent of the redshift, low-redshift probes are consistent with a nonaccelerated universe.
66 - M. T. Murphy 2003
The chemical abundances in damped Lyman-alpha systems (DLAs) show more than 2 orders of magnitude variation at a given epoch, possibly because DLAs arise in a wide variety of host galaxies. This could significantly bias estimates of chemical evolutio n. We explore the possibility that DLAs in which H_2 absorption is detected may trace cosmological chemical evolution more reliably since they may comprise a narrower set of physical conditions. The 9 known H_2 absorption systems support this hypothesis: metallicity exhibits a faster, more well-defined evolution with redshift than in the general DLA population. The dust-depletion factor and, particularly, H_2 molecular fraction also show rapid increases with decreasing redshift. We comment on possible observational selection effects which may bias this evolution. Larger samples of H_2-bearing DLAs are clearly required and may constrain evolution of the UV background and DLA galaxy host type with redshift.
122 - Sandra Savaglio 2009
Gamma-ray bursts (GRBs) are the brightest events in the universe. They have been used in the last five years to study the cosmic chemical evolution, from the local universe to the first stars. The sample size is still relatively small when compared t o field galaxy surveys. However, GRBs show a universe that is surprising. At z > 2, the cold interstellar medium in galaxies is chemically evolved, with a mean metallicity of about 1/10 solar. At lower redshift (z < 1), metallicities of the ionized gas are relatively low, on average 1/6 solar. Not only is there no evidence of redshift evolution in the interval 0 < z < 6.3, but also the dispersion in the ~ 30 objects is large. This suggests that the metallicity of host galaxies is not the physical quantity triggering GRB events. From the investigation of other galaxy parameters, it emerges that active star-formation might be a stronger requirement to produce a GRB. Several recent striking results strongly support the idea that GRB studies open a new view on our understanding of galaxy formation and evolution, back to the very primordial universe at z ~ 8.
155 - Ben Davies 2015
Red Supergiants (RSGs) are cool (~4000K), highly luminous stars (L - 10^5 Lsun), and are among the brightest near-infrared (NIR) sources in star-forming galaxies. This makes them powerful probes of the properties of their host galaxies, such as kinem atics and chemical abundances. We have developed a technique whereby metallicities of RSGs may be extracted from a narrow spectral window around 1{mu}m from only moderate resolution data. The method is therefore extremely efficient, allowing stars at large distances to be studied, and so has tremendous potential for extragalactic abundance work. Here, we present an abundance study of the Large and Small Magellanic Clouds (LMC and SMC respectively) using samples of 9-10 RSGs in each. We find average abundances for the two galaxies of [Z]LMC = -0.37 +/- 0.14 and [Z]SMC = -0.53 +/- 0.16 (with respect to a Solar metallicity of Zsun=0.012). These values are consistent with other studies of young stars in these galaxies, and though our result for the SMC may appear high it is consistent with recent studies of hot stars which find 0.5-0.8dex below Solar. Our best-fit temperatures are on the whole consistent with those from fits to the optical-infrared spectral energy distributions, which is remarkable considering the narrow spectral range being studied. Combined with our recent study of RSGs in the Galactic cluster Per OB1, these results indicate that this technique performs well over a range of metallicities, paving the way for forthcoming studies of more distant galaxies beyond the Local Group.
122 - Patricia Schady 2017
Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sam pling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long, and highly dust extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts, and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا