ترغب بنشر مسار تعليمي؟ اضغط هنا

DW Cancri: a magnetic VY Scl star with an orbital period of 86 minutes

126   0   0.0 ( 0 )
 نشر من قبل Pablo Rodriguez-Gil
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Rodriguez-Gil




اسأل ChatGPT حول البحث

We present the first time-resolved spectroscopic study of the cataclysmic variable DW Cancri. We have determined an orbital period of 86.10 +- 0.05 min, which places the system very close to the observed minimum period of hydrogen-rich cataclysmic variables. This invalidates previous speculations of DW Cnc being either a permanent superhumper below the period minimum or a nova-like variable with an orbital period longer than 3 hours showing quasi-periodic oscillations. The Balmer and HeI lines have double-peaked profiles and exhibit an intense S-wave component moving with the orbital period. Remarkably, the Balmer and HeI radial velocity curves are modulated at two periods: 86.10 +- 0.05 min (orbital) and 38.58 +- 0.02 min. The same short period is found in the equivalent width variations of the single-peaked HeII 4686 line. We also present time-resolved photometry of the system which shows a highly-coherent variation at 38.51 min, consistent with the short spectroscopic period. The large number of similarities with the short-period intermediate polar V1025 Cen lead us to suggest that DW Cnc is another intermediate polar below the period gap, and we tentatively identify the photometric and spectroscopic 38-min signals with the white dwarf spin period. DW Cnc has never been observed to undergo an outburst, but it occasionally exhibits low states ~2 mag fainter than its typical brightness level of V~14.5, resembling the behaviour of the high mass-transfer VY Scl stars.

قيم البحث

اقرأ أيضاً

Optical surveys, such as the MACHO project, often uncover variable stars whose classification requires followup observations by other instruments. We performed X-ray spectroscopy and photometry of the unusual variable star MACHO 311.37557.169 with XM M in April 2018, supplemented by archival X-ray and optical spectrographic data. The star has a bolometric X-ray luminosity of about $1times 10^{32}$ erg s$^{-1}$ cm$^{-2}$ and a heavily absorbed two-temperature plasma spectrum. The shape of its light curve, its overall brightness, its X-ray spectrum, and the emission lines in its optical spectrum suggest that it is most likely a VY~Scl cataclysmic variable.
80 - A.A. Nucita , L. Conversi , 2019
We report on the $XMM$-Newton observation of DW Cnc, a candidate intermediate polar candidate whose historical optical light curve shows the existence of periods at $simeq 38$, $simeq 86$ and $simeq 69$ minutes which were interpreted as the white dwa rf spin, the orbital and the spin-orbit beat periodicities. By studying the $0.3-10$ keV light curves, we confirm the existence of a period at $simeq 38$ minutes and find in the OM light curve a signature for a period at $75pm 21$ minutes which is consistent with both the orbital and spin-orbit beat. { These findings allow us to unveil without any doubt, the nature of DW Cnc as an accreting intermediate polar. The EPIC and RGS source spectra were analyzed and a best fit model, consisting of a multi-temperature plasma, was found. The maximum temperature found when fitting the data is $kT_{max}simeq 31$ keV which can be interpreted as an upper limit to the temperature of the shock.
GY Cnc is a deeply eclipsing cataclysmic variable star with an orbital period of 4.21 hours that has shown several dwarf nova outbursts. The variable was continuously observed by the K2/Kepler satellite with a short cadence in Campaign 5 (C05) for 75 days during 2015. The star was again observed in 2017/2018 for 80 consecutive days during Campaign 16 (C16). 419 well-observed eclipses were measured over C5 and 446 timings were determined in C16. A new ephemeris was calculated combining the K2 data, previously published timings, new light curves from the KELT Follow-Up Network, and additional observations in the AAVSO database. We have refined the orbital period of GY Cnc and improved its ephemeris which had accumulated an error of about 300s over 18 years. A quadratic term was not found to be significant indicating that there is currently no detectable orbital period derivative. We observed a correlation between the quiescent system brightness and the eclipse timing residuals that are as large as +/-15s in the K2 data.
We report photometry and spectroscopy of the novalike variable DW Cancri. The spectra show the usual broad H and He emission lines, with an excitation and continuum slope characteristic of a moderately high accretion rate. A radial-velocity search yi elds strong detections at two periods, 86.1015(3) min and 38.58377(6) min. We interpret these as respectively the orbital period P_orb of the binary, and the spin period P_spin of a magnetic white dwarf. The light curve also shows the spin period, plus an additional strong signal at 69.9133(10) min, which coincides with the difference frequency 1/P_spin-1/P_orb. These periods are stable over the 1 year baseline of measurement. This triply-periodic structure mimics the behavior of several well-credentialed members of the DQ Herculis (intermediate polar) class of cataclysmic variables. DQ Her membership is also suggested by the mysteriously strong sideband signal (at nu_spin-nu_orb), attesting to a strong pulsed flux at X-ray/EUV/UV wavelengths. DW Cnc is a new member of this class, and would be an excellent target for extended observation at these wavelengths.
88 - M. Uemura 2002
Our photometric monitoring revealed that DW Cnc, which was originally classified as a dwarf nova (V=15--17.5), remained at a bright state of Rc=14.68+/-0.07 for 61 days. In conjunction with optical spectra lacking a strong He II emission line, we pro pose that the object is not a dwarf nova, but a non-magnetic nova-like variable. Throughout our monitoring, the object showed strong quasi-periodic oscillations (QPOs) with amplitudes reaching about 0.3 mag. Our period analysis yielded a power spectrum with two peaks of QPOs, whose center periods are 37.5+/-0.1 and 73.4+/-0.4 min and, furthermore, with a significant power in frequencies lower than the QPOs. DW Cnc is a unique cataclysmic variable in which kilo-second QPOs were continuously detected for 61 days. We propose two possible interpretations of DW Cnc: (i) A permanent superhumper below the period minimum of hydrogen-rich cataclysmic variables. (ii) A nova-like variable having an orbital period over 3 hours. In this case, the QPOs may be caused by trapped disk oscillations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا